# Publication

Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, Denver, CO, USA, November 2017

Betweenness centrality (BC) is a crucial graph problem that measures the significance of a vertex by the number of shortest paths leading through it. We propose Maximal Frontier Betweenness Centrality (MFBC): a succinct BC algorithm based on novel sparse matrix multiplication routines that performs a factor of p1/3 less communication on p processors than the best known alternatives, for graphs with n vertices and average degree k = n/p2/3. We formulate, implement, and prove the correctness of MFBC for weighted graphs by leveraging monoids instead of semirings, which enables a surprisingly succinct formulation. MFBC scales well for both extremely sparse and relatively dense graphs. It automatically searches a space of distributed data decompositions and sparse matrix multiplication algorithms for the most advantageous configuration. The MFBC implementation outperforms the well-known CombBLAS library by up to 8x and shows more robust performance. Our design methodology is readily extensible to other graph problems.

@inproceedings{abc, abstract = {Betweenness centrality (BC) is a crucial graph problem that measures the significance of a vertex by the number of shortest paths leading through it. We propose Maximal Frontier Betweenness Centrality (MFBC): a succinct BC algorithm based on novel sparse matrix multiplication routines that performs a factor of p1/3 less communication on p processors than the best known alternatives, for graphs with n vertices and average degree k = n/p2/3. We formulate, implement, and prove the correctness of MFBC for weighted graphs by leveraging monoids instead of semirings, which enables a surprisingly succinct formulation. MFBC scales well for both extremely sparse and relatively dense graphs. It automatically searches a space of distributed data decompositions and sparse matrix multiplication algorithms for the most advantageous configuration. The MFBC implementation outperforms the well-known CombBLAS library by up to 8x and shows more robust performance. Our design methodology is readily extensible to other graph problems.}, author = {Edgar Solomonik and Maciej Besta and Flavio Vella and Torsten Hoefler}, booktitle = {Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis}, title = {Scaling Betweenness Centrality using Communication-Efficient Sparse Matrix Multiplication}, venue = {Denver, CO, USA}, year = {2017} }