Publications by Flavio Vella

×

Status message

The Publications site is currently under construction, as a result some publications might be missing.

2017

Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, Denver, CO, USA, November 2017
Betweenness centrality (BC) is a crucial graph problem that measures the significance of a vertex by the number of shortest paths leading through it. We propose Maximal Frontier Betweenness Centrality (MFBC): a succinct BC algorithm based on novel sparse matrix multiplication routines that performs a factor of p1/3 less communication on p processors than the best known alternatives, for graphs with n vertices and average degree k = n/p2/3. We formulate, implement, and prove the correctness of MFBC for weighted graphs by leveraging monoids instead of semirings, which enables a surprisingly succinct formulation. MFBC scales well for both extremely sparse and relatively dense graphs. It automatically searches a space of distributed data decompositions and sparse matrix multiplication algorithms for the most advantageous configuration. The MFBC implementation outperforms the well-known CombBLAS library by up to 8x and shows more robust performance. Our design methodology is readily extensible to other graph problems.
@inproceedings{abc,
	abstract = {Betweenness centrality (BC) is a crucial graph problem that measures the significance of a vertex by the number of shortest paths leading through it. We propose Maximal Frontier Betweenness Centrality (MFBC): a succinct BC algorithm based on novel sparse matrix multiplication routines that performs a factor of p1/3 less communication on p processors than the best known alternatives, for graphs with n vertices and average degree k = n/p2/3. We formulate, implement, and prove the correctness of MFBC for weighted graphs by leveraging monoids instead of semirings, which enables a surprisingly succinct formulation. MFBC scales well for both extremely sparse and relatively dense graphs. It automatically searches a space of distributed data decompositions and sparse matrix multiplication algorithms for the most advantageous configuration. The MFBC implementation outperforms the well-known CombBLAS library by up to 8x and shows more robust performance. Our design methodology is readily extensible to other graph problems.},
	author = {Edgar Solomonik and Maciej Besta and Flavio Vella and Torsten Hoefler},
	booktitle = {Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis},
	title = {Scaling Betweenness Centrality using Communication-Efficient Sparse Matrix Multiplication},
	venue = {Denver, CO, USA},
	year = {2017}
}
Proceedings of the 31st IEEE International Parallel & Distributed Processing Symposium (IPDPS'17), Orlando, FL, USA, May 2017
The constantly increasing gap between communication and computation performance emphasizes the importance of communication-avoidance techniques. Caching is a well-known concept used to reduce accesses to slow local memories. In this work, we extend the caching idea to MPI-3 Remote Memory Access (RMA) operations. Here, caching can avoid inter-node communications and achieve similar benefits for irregular applications as communication-avoiding algorithms for structured applications. We propose CLaMPI, a caching library layered on top of MPI-3 RMA, to automatically optimize code with minimum user intervention. We demonstrate how cached RMA improves the performance of a Barnes Hut simulation and a Local Clustering Coefficient computation up to a factor of 1.8x and 5x, respectively. Due to the low overheads in the cache miss case and the potential benefits, we expect that our ideas around transparent RMA caching will soon be an integral part of many MPI libraries.
@inproceedings{abc,
	abstract = {The constantly increasing gap between communication and computation performance emphasizes the importance of communication-avoidance techniques. Caching is a well-known concept used to reduce accesses to slow local memories. In this work, we extend the caching idea to MPI-3 Remote Memory Access (RMA) operations. Here, caching can avoid inter-node communications and achieve similar benefits for irregular applications as communication-avoiding algorithms for structured applications. We propose CLaMPI, a caching library layered on top of MPI-3 RMA, to automatically optimize code with minimum user intervention. We demonstrate how cached RMA improves the performance of a Barnes Hut simulation and a Local Clustering Coefficient computation up to a factor of 1.8x and 5x, respectively. Due to the low overheads in the cache miss case and the potential benefits, we expect that our ideas around transparent RMA caching will soon be an integral part of many MPI libraries.},
	author = {Salvatore Di Girolamo and Flavio Vella and Torsten Hoefler},
	booktitle = {Proceedings of the 31st IEEE International Parallel \& Distributed Processing Symposium (IPDPS{\textquoteright}17)},
	title = {Transparent Caching for RMA Systems},
	venue = {Orlando, FL, USA},
	year = {2017}
}