Publication

Proceedings of the IEEE International Conference on Cluster Computing (CLUSTER) , Taipei, Taiwan, December 2016
Tuning large applications requires a clever exploration of the design and configuration space. Especially on supercomputers, this space is so large that its exhaustive traversal via performance experiments becomes too expensive, if not impossible. Manually creating analytical performance models provides insights into optimization opportunities but is extremely laborious if done for applications of realistic size. If we must consider multiple performance-relevant parameters and their possible interactions, a common requirement, this task becomes even more complex. We build on previous work on automatic scalability modeling and significantly extend it to allow insightful modeling of any combination of application execution parameters. Multi-parameter modeling has so far been outside the reach of automatic methods due to the exponential growth of the model search space. We develop a new technique to traverse the search space rapidly and generate insightful performance models that enable a wide range of uses from performance predictions for balanced machine design to performance tuning.
@inproceedings{abc,
	abstract = {Tuning large applications requires a clever exploration of the design and configuration space. Especially on supercomputers, this space is so large that its exhaustive traversal via performance experiments becomes too expensive, if not impossible. Manually creating analytical performance models provides insights into optimization opportunities but is extremely laborious if done for applications of realistic size. If we must consider multiple performance-relevant parameters and their possible interactions, a common requirement, this task becomes even more complex. We build on previous work on automatic scalability modeling and significantly extend it to allow insightful modeling of any combination of application execution parameters. Multi-parameter modeling has so far been outside the reach of automatic methods due to the exponential growth of the model search space. We develop a new technique to traverse the search space rapidly and generate insightful performance models that enable a wide range of uses from performance predictions for balanced machine design to performance tuning.},
	author = {Alexandru Calotoiu and David Beckinsale and Christopher W. Earl and Torsten Hoefler and Ian Karlin and Martin Schulz and Felix Wolf},
	booktitle = {Proceedings of the IEEE International Conference on Cluster Computing (CLUSTER) },
	title = {Fast Multi-Parameter Performance Modeling},
	venue = {Taipei, Taiwan},
	year = {2016}
}