Publications by Simon Kassing
2017
Systems Group Master's Thesis, no. 159; Department of Computer Science, March 2017
Supervised by: Prof. Ankit Singla
Supervised by: Prof. Ankit Singla
Recent work has indicated that any static data center network is fundamentally
limited, due to its inability to move around network capacity.
Is this truly the case, is the static network not flexible enough to handle
varying (skewed) traffic scenarios through only traffic engineering?
Can we only find refuge in dynamic topologies, introducing on-the-fly
re-arrangement of network links at a cost? In pursuit of these research
goals, three main data center topologies were evaluated: traditional
(oversubscribed) fat-trees, expanders and dynamic topologies. Using
flow optimality evaluation via a linear program, worst case traffic scenarios
were identified and their respective performance measured under
perfect traffic engineering. A custom discrete packet simulator was
used to evaluate the two static topologies under a wide range of traffic
scenarios and compare results to performance claims of recent dynamic
topology research. It was found that the modeling of server up-links is
crucial to a meaningful comparison...
@mastersthesis{abc, abstract = {Recent work has indicated that any static data center network is fundamentally limited, due to its inability to move around network capacity. Is this truly the case, is the static network not flexible enough to handle varying (skewed) traffic scenarios through only traffic engineering? Can we only find refuge in dynamic topologies, introducing on-the-fly re-arrangement of network links at a cost? In pursuit of these research goals, three main data center topologies were evaluated: traditional (oversubscribed) fat-trees, expanders and dynamic topologies. Using flow optimality evaluation via a linear program, worst case traffic scenarios were identified and their respective performance measured under perfect traffic engineering. A custom discrete packet simulator was used to evaluate the two static topologies under a wide range of traffic scenarios and compare results to performance claims of recent dynamic topology research. It was found that the modeling of server up-links is crucial to a meaningful comparison...}, author = {Simon Kassing}, school = {159}, title = {Static Yet Flexible: Expander Data Center Network Fabrics Master Thesis}, year = {2017} }