Publications by Claude Barthels

×

Status message

The Publications site is currently under construction, as a result some publications might be missing.

2017

Proceedings of the 2017 ACM International Conference on Management of Data, SIGMOD Conference 2017, Chicago, IL, USA, May 2017
@inproceedings{abc,
	author = {Darko Makreshanski and Jana Giceva and Claude Barthels and Gustavo Alonso},
	booktitle = {Proceedings of the 2017 ACM International Conference on Management of Data, SIGMOD Conference 2017, Chicago, IL, USA},
	title = {BatchDB: Efficient Isolated Execution of Hybrid OLTP+OLAP Workloads for Interactive Applications.},
	url = {http://doi.acm.org/10.1145/3035918.3035959},
	year = {2017}
}
PVLDB, January 2017
@inproceedings{abc,
	author = {Claude Barthels and Gustavo Alonso and Torsten Hoefler and Timo Schneider and Ingo M{\"u}ller},
	booktitle = {PVLDB},
	title = {Distributed Join Algorithms on Thousands of Cores.},
	url = {http://www.vldb.org/pvldb/vol10/p517-barthels.pdf},
	year = {2017}
}
IEEE Data Eng. Bull., January 2017
High-throughput, low-latency networks are becoming a key element in database appliances and data processing systems to reduce the overhead of data movement. In this article, we focus on Remote Direct Memory Access (RDMA), a feature increasingly available in modern networks enabling the network card to directly write to and read from main memory. RDMA has started to attract attention as a technical solution to quite a few performance bottlenecks in distributed data management but there is still much work to be done to make it an effective technology suitable for database engines. In this article, we identify several advantages and drawbacks of RDMA and related technologies, and propose new communication primitives that would bridge the gap between the operations provided by high-speed networks and the needs of data processing systems.
@article{abc,
	abstract = {High-throughput, low-latency networks are becoming a key element in database appliances and data processing systems to reduce the overhead of data movement. In this article, we focus on Remote Direct Memory Access (RDMA), a feature increasingly available in modern networks enabling the network card to directly write to and read from main memory. RDMA has started to attract attention as a technical solution to quite a few performance bottlenecks in distributed data management but there is still much work to be done to make it an effective technology suitable for database engines. In this article, we identify several advantages and drawbacks of RDMA and related technologies, and propose new communication primitives that would bridge the gap between the operations provided by high-speed networks and the needs of data processing systems.},
	author = {Claude Barthels and Gustavo Alonso and Torsten Hoefler},
	journal = {IEEE Data Eng. Bull.},
	title = {Designing Databases for Future High-Performance Networks.},
	url = {http://sites.computer.org/debull/A17mar/p15.pdf},
	year = {2017}
}

2015

Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, Melbourne, Victoria, Australia, June 2015
@inproceedings{abc,
	author = {Claude Barthels and Simon Loesing and Gustavo Alonso and Donald Kossmann},
	booktitle = {Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, Melbourne, Victoria, Australia},
	title = {Rack-Scale In-Memory Join Processing using RDMA.},
	url = {http://doi.acm.org/10.1145/2723372.2750547},
	year = {2015}
}