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Abstract The goal of a data integration system is to allow users to
query diverse information sources through a schema that is familiar to
them. However, there may be many different users who may have dif-
ferent preferred schemas, and the data may be stored in data sources
which use still other schemas. To integrate data, mapping rules must
be defined to map entities of the data sources to entities of the users’
schemas. In large information systems with many data sources which
serve sophisticated applications, there can be many such mapping rules
and they can be complex. The purpose of this paper is to study the per-
formance of alternative query processing techniques for data integration
systems with many complex mapping rules. A new approach, mapping
data to queries (MDQ), is presented. Through extensive performance
experiments, it is shown that this approach performs well for complex
mapping rules and queries, and scales significantly better with the num-
ber of rules than the state of the art, which is based on query rewrite. In
fact, the performance is close to that of an ideal system in which there
is only a single schema used by all sources and queries.

1 Introduction

Data integration is a mess. In any realistic scenario there is a hodge-podge of
many different schemas. Often, several different schemas are used within a single
document. In the health care industry, for example, hospitals and doctors may
use different schemas in order to describe different diseases and therapies. As a
result, a single electronic health record may contain entries with varying schemas
from different hospitals and doctors. Likewise, lineitems of purchase orders may
be represented using different schemas, as the result of customizations carried
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out to the order processing software for specific classes of products, delivery
terms, or business models.

The diversity of schemas is not going away. As the world becomes flatter and
more interconnected due to globalization, data from more and more sources need
to be integrated. Even international standardization bodies such as HL7 [14] and
XBRL [32] have realized that it is impossible to find the “one size fits all” schema
for a particular domain. Instead, these organizations focus on standardizing
conventions for the design of schemas in order to facilitate interoperability across
schemas. Rather than trying to eliminate diversity, the goal must be to live with
an increasing diversity. This paper picks up this challenge.

In order to integrate data from diverse sources, mapping rules are required.
Mapping rules relate concepts from one schema to concepts of another schema.
Mapping rules decouple the complexity of data integration from the task of
developing applications. Application developers can write queries and updates
according to one specific target schema without being aware in which format
and schema the data are actually stored.

The state of the art in processing queries and updates in the presence of
mapping rules is to rewrite the queries and updates according to the mapping
rules. Using this approach, queries issued over one schema are translated at
compile time using the mapping rules into queries over mapped schemas. These
translated queries are often quite large, containing many unions and disjunctions.
As an example, if a query asks for all orders and there is a rule that specifies that
all purchase-orders are orders, then the query is rewritten to a query that asks
for all orders OR purchase-orders. If a query asks for the grossprice of all orders
and there are mapping rules that specify that all purchase-orders are orders
and that netprice in purchase-orders can be used to compute grossprice (using a
specific transformation function f), then query rewrite would rewrite the query
to find the grossprice OR f(netprice) of all orders OR purchase-orders. While
such queries can be optimized by modern database systems, these examples
demonstrate that the query rewrite approach does not scale well with the number
of mapping rules.

The main contribution of this paper is an alternative query processing tech-
nique which scales well with the number of schemas and mapping rules. We call
this technique mapping data to queries (MDQ). Rather than rewriting queries
at compile time, MDQ takes a lazy approach and annotates the data at run-
time; only data that potentially matches the query is annotated. In order to
scale with the number of mapping rules, the mapping rules are indexed so that
they can be probed while the data is processed at runtime. This paper shows
that MDQ is simple to implement and has excellent performance. It can scale
to handle thousands of schemas and tens of thousands of mapping rules. In
fact, the performance is close to that of a (theoretically) optimal system without
any heterogeneity or mapping rules in which all data sources and application
programmers agree on a single schema.

By shifting the bulk of the work to runtime, MDQ can take advantage of the
data itself to reduce the work. By contrast, query rewriting happens at compile
time, independent of the data. Hence, even if very few of the mapping rules
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Figure 1. DSMS Integration Scenario

will produce data satisfying the query, the entire rewritten query is executed.
Even with sophisticated optimizations, too much is unknown at compile time,
resulting in extra work for the query rewriting approach. Another benefit of
MDQ is that no schemas are actually needed (though they are not precluded);
data can be directly examined and returned on an as-needed basis. This makes
MDQ appropriate for environments with dynamic and evolving data formats.

While the idea of mapping data to queries is general and can be applied to any
data integration system, we have implemented it in the context of a data stream
management system (DSMS). In this environment (Figure 1), incoming data
feeds contain data in different formats (that is, conforming to different schemas)
and, potentially, even mixed formats. From these feeds, a set of continuous
queries, possibly written against still other schemas, produces a set of output
streams, leveraging mapping rules to ensure that the right data are returned.
Users can add mapping rules and queries independently at any time, and new
data (in potentially new formats) can arrive at any time.

The remainder of this paper is organized as follows. Section 2 discusses
related work. Section 3 covers necessary background, including the framework
we adopt, the rule language used for our examples, query rewrite, in general,
and our implementation in a DSMS. Section 4 presents the main contribution of
this work, the mapping data to queries technique (MDQ). Section 5 shows the
results of our performance experiments. Section 6 concludes and offers avenues
for future work.

2 Related Work

The discovery and design of schema mappings has become a mature field, led by
research projects such as Clio [22, 26], and covering both relational and XML
data. Products leveraging these technologies include the Clio-based Rational
Data Architect [10] and the design editor of BEA’s AquaLogic Data Services
Platform [4]. Lately there has even been work on a benchmark for mapping
tools [2]. This field of work is orthogonal to our work in this paper; our work
assumes that the mapping rules are already known and the goal is to process
queries as efficiently as possible in the presence of mapping rules.
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Given a set of mapping rules, the state-of-the-art in query processing for data
integration is to rewrite queries according to the mapping rules. For declara-
tive LAV (local-as-view) mappings, query rewriting is based on an approach
called answering queries using views [19]. Query rewriting for LAV relational
schemas has been considered in MiniCon [27] which evaluates the scalability
of the rewriting algorithm for queries over a single (global) schema using large
numbers of mappings (views). For XML data (and combinations of relational
and XML data), there are several proposals for query rewriting [33, 25]. Again
the assumption in evaluation is that queries are written against a single (global
or target) schema, though the rewriting may use potentially large numbers of
mappings or views. These solutions show the scalability of the rewriting pro-
cess itself (with respect to the number of views), but they do not address the
performance of actually executing the rewritten queries. Improving the runtime
performance of queries is the primary goal of our work.

Query rewrite is also the standard technique used for information integra-
tion in peer-to-peer systems like Piazza [12] and pay-as-you-go systems like
iTrails [28]. In Piazza, queries may be written on any schema and are answered
using data in a set of networked data sources using query rewriting and mapping
composition. Piazza uses GLAV mappings for which query answering may be
undecidable. The main contribution of iTrails is a coloring algorithm in order
to deal with transitivity and cyclic mapping rules.

Query rewrite and MDQ are ways to implement query processing for vir-
tual data integration. In this approach, the data is stored and queried from
the heterogeneous data sources and feeds in its original formats. An alternative
approach is to cleanse and transform the data before it is processed. This ap-
proach has been advocated for data warehouses and its main principle can also
be applied for streaming data. This approach is beneficial if users can agree on
a single (or few) “gold standard” schemas and if the investment to transform
the data is amortized by running many queries on the transformed data. The
goal of our work is to explore new (virtual) query processing techniques if these
conditions are not met.

The Semantic Web also provides tools for data integration. RDF [18] and
OWL [20] are ways to specify mappings between concepts in an open way. In
some sense, RDF and OWL are more powerful than the mapping rules tradition-
ally considered for database integration; for instance, OWL supports negation.
On the other hand, RDF and OWL are less powerful because they do not allow
the specification of complex mapping functions such as the concatenation of first
name and last name. It is an important avenue for future work to study how
the query processing techniques for data integration studied in this work can be
extended to support OWL features such as negation.

As mentioned in the introduction, this work studies data integration in the
context of data stream management systems and continuous query processing.
Obviously, there has been a great deal of work in this area; e.g., [30, 6, 5, 23, 1].
All this work can be leveraged to implement a heterogeneous DSMS as depicted
in Figure 1. To the best of our knowledge, however, there has not been any prior
work that studies the processing of queries on heterogeneous data streams.
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3 Background

In this section, we present the framework and goals of our work. We define the
mapping rules we use, and explain how query rewrite employs these mappings
for query processing. We also sketch the prototype implementation of query
rewrite used for comparison with our new Mapping Data to Queries technique
in the performance experiments of Section 5.

3.1 Framework

Our solutions are implemented in the context of a data stream management
system. We will use the term message to refer to a unit of stream data over
which a set of continuous queries will be processed. A message may be an
XML document or (more commonly) a fragment of XML such as an element.
A message can also be a fragment of JSON or indeed any format that can be
serialized.

Messages from different data sources may have different schemas. Likewise,
queries from different users and applications may have different schemas. If
the messages involve purchase orders, for example, then the individual message
formats may be tuned to the needs of particular business units or be dynamically
modified to accommodate changing client needs. Hence, our solutions must
process data when there is not a set of predefined schemas for all sources or
when there are no predefined schemas for consumption of messages by queries.

Our implementation of a DSMS is done by extending Saxon, an open-source
XQuery engine. Saxon is a full-function XQuery processor, conforming to the
XQuery 1.0 specification. We simulate the streaming environment on top of
Saxon, running pre-compiled queries against messages as they arrive. It was im-
portant to use a full-fledged XQuery processor for this work, both to realistically
mimic the environment of our motivating applications, and to enable us to run
standard benchmarks for our performance experiments (Section 5). We do not
impose any restrictions on the queries.

3.2 Mapping Rules

To study the performance of queries over large numbers of mappings and schemas,
we use an intuitive, yet powerful mapping formalism based on XQuery. We are
making no innovations in the mapping formalism, but rather have been guided
by the practical considerations described above in our choice. The mapping
formalism encompasses the most common types of mappings used in practice,
and avoids mappings for which query rewriting algorithms are not yet known.
Query rewriting is based on query containment, a notoriously hard problem for
XQuery. We avoid this problem by restricting our mappings to a set for which
the containment algorithms of Miklau and Suciu [21] can be used.

Rules of varying degrees of complexity are needed for mappings, beginning
with specifications of is-a relationships and sameAs relationships, and ranging
to the ability to restructure data and to compute complex functions. As is

5



common, a mapping rule relates a query over a source to a query over a target.
More specifically, mapping rules are described using the following syntax:

source-expr [ as $variable ] → target-expr

In this syntax, as and → are keywords. The source expression source-expr is
any XPath 1.0 expression [7] with forward axis steps only.

For example, consider the XML elements shown in Figure 2, representing
orders from two different business units in a large vendor where there may be
dozens of business units each with their own version of an order. The simple
rule

purchase-order → order

states that a purchase-order element can be used in lieu of an order element.
The consequence is that a purchase-order element matches the query //order.
The purchase-order element would be returned in its original form; it would
not be transformed into an order element. The purchase-order is returned
with all of its sub-elements, even if these sub-elements have not been mapped a
priori to elements in other schemas. If, in addition to this first rule, we define
the inverse rule (order → purchase-order), the two rules together specify that
these elements are equivalent. In that case, both elements would match queries
asking for order and/or purchase-order.

Predicates are allowed in source expressions and may involve any XQuery
expression (including reverse axes). Predicates can be used to restrict the context
for a mapping rule. In Figure 2, the netprice in the purchase-order element
may be equivalent to the grossprice for orders if the tax is 0. This can be
expressed using the following rule.

netprice[../purchase-order/tax=0] → grossprice

The use of predicates to scope the applicability of a rule only works for the source.
This example also demonstrates the use of path expressions to navigate through
the source. Path expressions can also be used to map elements at different levels
of nesting, e.g.,

item → orderlines/orderline

This rule implements the unnesting of orderline elements in the second schema
of Figure 2. In general, the target expression can be any XPath expression with
only child steps and no predicates. Alternatively, a target expression can be an
element constructor with any XQuery expression to compute the content of the
element. The target expression may use the $variable which is bound to the
source-expr in the as clause. The target expression does not allow any other free
variables (i.e., existentials). Nevertheless, this framework allows us to express
extremely powerful mappings because the full power of XQuery is applicable in
predicates over the source and in element constructors.

As a final example, the following rule shows the use of an element constructor
when the elements (and their sub-elements) in different schemas do not match
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<order customer=’Sue’>

<orderlines>

<orderline>...</orderline>

<orderline>...</orderline>

</orderlines>

<grossprice>45</grossprice>

</order>

<purchase-order cust=’Josh’>

<item>...</item>

<item>...</item>

<netprice>35</netprice>

<tax>10</tax>

</purchase-order>

Figure 2. Two purchase orders

directly. This rule models the mapping of a netprice to a grossprice for the
data snippets of Figure 2. Such rules are frequent in practice, and this example
motivates the need for a powerful expression language like XQuery in order to
define such complex mappings. Notice that the target-expr uses the variable $n
which is bound by the as clause to instances of the source-expr. Any sub-element
of the source expression could also be used in the target element constructor.

netprice as $n →
<grossprice>
{ $n + $n ∗ $n/../tax div 100 }

</grossprice>

The rules described above are quite general. As our examples show, the
mapping rules also have significant expressive power (by leveraging XPath and
XQuery as languages to define artifacts which are substitutable or equivalent).
In addition, rules can be composed, e.g., from a → b and b → c, it can be
inferred that a → c. Recursive rules such as a → a/a can also be specified. Our
implementations of query rewrite and of mapping data to queries both handle
composition and recursion in the rules. A more detailed description of what the
rules can do and their semantics may be found in [15].

3.3 Query Rewrite

In data integration scenarios, queries are typically rewritten at compile time
based on the mapping rules. The key idea is to generate union expressions
whenever the right-hand side of a mapping rule is subsumed by a sub-expression
of the query. A simple example is given in the introduction: The query //orders
is rewritten to //(orders | purchase-orders) given the rule purchase-orders →
orders.
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Rewritten queries can become very large. Continuing the example from the
introduction, given rules purchase-orders→ orders and f(netprice)→ grossprice,
the query //orders/grossprice is rewritten to the following query.

//(orders/grossprice | orders/f(netprice) |
purchase-orders/grossprice | purchase-orders/f(netprice))

If every business unit in our large vendor defines its own namespace and
vocabulary, then the size of even simple queries grows linearly with the number
of business units, which impacts the running time of the rewritten query. For
complex queries, the situation can get even worse, as will be shown in Section 5.
Of course, not all mapping rules affect every query; only the relevant rules will
be applied in the rewriting. Still, monster queries that take all business units
into account are generated, even if only a few business units have relevant data.
The pool of mapping rules must be carefully administered because bad rules
(for example, rules that apply to no, or very little data or queries) hurt the
performance of the whole system.

Another disadvantage of query rewriting is that queries must be recompiled
whenever new mapping rules are added to the system. (All queries must be
checked against the new rule, even if it proves not to be relevant to the query.)
In addition to the overhead and time to do the recompilation, in our environ-
ment, recompilation of a continuous query involves temporarily disabling the
continuous query which impacts the availability of the system.

The major advantage of the query rewrite approach is that after the rewrite,
the query compiler can simplify and optimize the query. After query rewrite, all
state-of-the-art query processing techniques are applicable. In fact, the query
rewrite approach can be implemented using a pre-processor and an off-the-shelf
DBMS (or in our case, DSMS) of choice.

3.4 Implementing Query Rewrite

Our implementation of query rewrite (based on Miklau and Suciu [21]) consists
of two steps: (a) generating union expressions for sub-expressions of a query
based on mapping rules, and (b) substituting the generated union expressions
for the sub-expressions in the query. For every sub-expression of a query that
subsumes the right-hand side (i.e., target expression) of at least one mapping
rule, a union expression must be generated which involves the original sub-
expression and an expression based on the left-hand side of the mapping rule
(i.e., the source expression). If a sub-expression subsumes the target expression
of several mapping rules, then the union expression naturally involves the source
expression of all matching mapping rules. Therefore, we group the mapping rules
by their target expressions in order to facilitate the generation of these union
expressions.

Table 1 lists the templates we need to generate union expressions for the
mapping rules of our benchmark (Section 5). The first three templates are
straightforward: for simple path expressions, the union expression is constructed
using the source expression of the mapping rule. If the target expression of the
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Mapping Rule Union

a → x (x | a)
a[b] → x (x | a[b])
a/b → x (x | a/b)
a as $a → (x | (for $a in a

<x> {. . . } </x> return <x> {. . . } </x>))

Table 1. Templates for Union Expressions
for a query which involves an “x”; e.g., //x

mapping involves an element constructor (the last template of Table 1), then an
alternative in the union must be generated for each instantiation of the variable
bound to the source expression of the mapping rule. This can be implemented
in XQuery with a simple FLWR expression.

The second step, after the generation of union expressions, is to substitute
steps in the path expressions of the query with the generated union expressions.
Every XPath step expression is replaced with the corresponding union expression
(which we found using a path containment checking algorithm [21]).

Table 1 does not deal with the case that the target expression of a mapping
rule is a multi-step path expression; e.g., a → x/y. This case is special because
checking path containment is difficult in the general case (i.e., it is difficult to
find the right places to do the substitution), so writing a general equivalence
is not possible. We do include such rules in our benchmark (again using the
algorithms of [21]).

4 Mapping Data to Queries

This section describes a fundamentally new approach to (continuous) query pro-
cessing and data integration with mapping rules. This technique maps the data
to the queries at runtime, rather than mapping the queries to the data at com-
pile time as in the query rewrite approach. Consequently, we call this method
mapping data to queries or MDQ, for short.

The main idea of MDQ is to annotate the data while it is processed in order
to represent the effects of mapping rules in the data (rather than in the query).
That is, the internal representation of a message is augmented at runtime to
reflect how mapping rules affect parts of the message. Augmenting the internal
representation of a message is carried out lazily as part of query processing. As a
result, only those parts of a message are augmented that are relevant for at least
one query. If the whole message is irrelevant for all queries, then the mapping
rules will not be executed and no data will be annotated. In order to scale with
the number of mapping rules, MDQ indexes the source expressions of mapping
rules so that mapping rules that match a part of a message can be found quickly
at runtime.
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Figure 3. Annotating Data with MDQ

As will be shown in Section 5, the big advantage of the MDQ approach is that
it scales well with the number of mapping rules. MDQ also performs better than
query rewrite if the mapping rules are complex or if the queries are complex and
involve many path expressions. Furthermore, MDQ has another nice property:
It is possible to add (and remove) mapping rules without recompiling any queries.
In this way, MDQ implements a pay-as-you-go data integration approach [13]
and enables high availability at the same time. The query rewrite approach, on
the other hand, involves recompilation of queries whenever a new rule is added
or a rule is deleted, thereby making the system unavailable for a short period of
time.

The main disadvantage of the MDQ approach is that it involves modifica-
tions to the core of the DSMS; all key components such as the storage manager,
the compiler, and the runtime system need to be adjusted. Fortunately, these
adjustments are straightforward to implement. As a proof of concept, we inte-
grated the MDQ approach into an open source XQuery processor (Saxon) and
the effort was reasonable (about one person year). The remainder of this section
describes the adjustments we made as part of this exercise.

4.1 Storage Manager

In order to implement the MDQ approach, the storage manager, which maintains
the internal representation of all data, must be extended to store annotations
generated by the evaluation of mapping rules on the data. Figure 3 illustrates
how MDQ annotates data with the help of an example. Figure 3a shows a
small XML snippet. Figure 3b shows how this XML snippet is represented
as a tree. The labels of edges represent the qualified names of attributes or
elements (QNames) in the original XML snippet. Leaf nodes contain values
(e.g., the string “Josh”) of the original XML snippet. Figure 3c shows the
annotated tree after applying the mapping rules purchase-order → order and
item → orderlines/orderline. The first rule, purchase-order → order, adds an
additional edge into the tree in order to represent that the root node also matches
a query which asks for an order. The second rule, item → orderlines/orderline,
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adds an additional node and two edges in order to represent that items can be
reached by the path expression //orderlines/orderline.

Figure 4 shows that there are four ways a mapping rule can impact the tree
that represents a message. The simplest case is shown in Figure 4a for simple
aliasing mapping rules which map one QName to another QName. In this case,
an additional edge from a parent to a child is added (just as for purchase-order
→ order in Figure 3c). If the source expression of the mapping rule involves a
path expression (i.e., unnesting), then the edge can go across several levels of
the tree; this pattern is shown in Figure 4b. Since the source expression of a
mapping rule only involves forward axes, an edge always goes from a node to
one of its descendants (never to an ancestor) so the annotated tree is always
acyclic. Figures 4c and 4d show how new nodes can be created through the
application of a mapping rule. Nodes are generated if the target expression of a
mapping rule involves a path expression (i.e., nesting as shown in Figure 4c) or
a constructor (Figure 4d). The pattern shown in Figure 4c corresponds to the
application of the item → orderlines/orderline mapping rule in the example of
Figure 3c.

Even though it is not shown in Figures 3 and 4, it is possible that a node
has several annotations. For instance, the root of the annotated tree of Figure
3c could have three incoming edges, if there were an additional rule order → po:
(a) the purchase-order edge derived from the original XML snippet; (b) the
order annotation generated from the purchase-order → order rule; and (c) a po
annotation generated from the order → po rule. In this example, it is impor-
tant that the order annotation is generated before the po annotation because,
otherwise, the order → po rule would not become applicable. Nevertheless, the
annotations themselves in the annotated tree are not ordered. Annotations are
only needed during query processing to detect whether a particular node of the
annotated tree matches a query. For this purpose, at least one annotation needs
to match; if several annotations match, the order of evaluation does not matter.
As a result, the annotated tree does not need to order annotations. The flexibil-
ity to add annotations in any order to the annotated tree is important. First, it
allows MDQ to be applied lazily at runtime, as described in Section 4.3. Second,
unordered rules are significantly easier to maintain than ordered.

An annotated tree can be serialized to XML (or JSON, or any other seri-
alization format) in order to produce query results in exactly the same way as
classic (un-annotated) trees. As part of serialization, the additional edges and
nodes generated to encode the mapping rules are simply ignored. As a result,
the query //order returns a purchase-order element with item sub-elements in
the example of Figure 3c; the result does not contain any order, orderlines,
or orderline elements.

For practical purposes, there are many alternative ways to implement trees
in XQuery processors. Saxon, for instance, uses the TinyTree model [17]. Anno-
tated trees, as required for MDQ, are no longer trees in the strict sense; they are
acyclic directed graphs. Nevertheless, all the implementations that we are aware
of can easily be extended in order to implement such directed acyclic graphs with
annotations. In our implementation for Saxon, we used an array representation
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Figure 4. Expansion Cases

as proposed in the Pathfinder project [9, 3].

4.2 Query Compiler

Although the change in the storage manager from a tree to an acyclic graph
with annotations seems significant, only a few adjustments must be made to
the query compiler of an XQuery processor. The two most significant changes
involve additional duplicate elimination and sorting a query result in document
order. For instance, duplicate elimination becomes necessary for the expression
(/purchase-order | /order) applied to the annotated tree of Figure 3c. Without
duplicate elimination, the root node would be returned twice as a query result
because this root node matches both paths. Additional sorting in document
order can be necessary if annotations are labelled in the same way as edges of
the original (un-annotated) tree.

Obviously, duplicate elimination and sorting in document order are not al-
ways needed. For instance, duplicate elimination is not necessary for the query
/purchase-order. As a result, the compiler’s optimizer must be extended in order
to detect such situations and add these costly operators in a query plan only
when they are needed. Another important optimization is to identify at compile
time the set of potentially relevant mapping rules. Eliminating mapping rules
which have no impact obviously reduces the running time because irrelevant
mapping rules are never applied. This optimization works in the same way for
the MDQ approach as for the query rewrite approach described in Section 3.4.

4.3 Runtime System

As mentioned at the beginning of this section, MDQ works at runtime. Figure 5
shows how the runtime system of a traditional query processor is extended to
integrate the MDQ approach. The runtime system of a traditional query pro-
cessor is composed of an interpreter which executes a query plan by executing
each operator of a query (e.g., scans and joins) with the help of the storage
manager. This architecture is extended in three ways (Figure 5b): First, the
storage manager must be extended in order to implement annotated trees, as
described in Section 4.1. Second, a new component, the rule manager, is added
which interprets the mapping rules, thereby creating new edges and nodes in the
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Figure 5. Extended Runtime System

annotated tree. Third, the query interpreter must be extended in order to call
the rule manager so that the interpretation of mapping rules in the rule manager
and the interpretation of queries is interleaved. The following subsections ex-
plain in more detail how the interpreter and rule manager interact during query
processing using MDQ.

Lazy Evaluation of Mapping Rules A näıve way to implement MDQ is to
apply all mapping rules to a message eagerly before processing queries on that
document for the first time. That is, when a new message is processed, then
that message is parsed and immediately all mapping rules are applied to it in
order to create the completely annotated tree for that message. After that, all
queries can be interpreted using that annotated tree in the same way as in a
traditional query processor. In fact, the query interpreter and its operators need
not be extended at all in this approach.

While this eager approach is extremely simple to implement, it exhibits poor
performance because it applies all mapping rules on all nodes of the message.
Even if the set of relevant mapping rules is pruned at compile time (Section 4.2),
many mapping rules are applied to many nodes unnecessarily. For instance, if
the query asks for all orders of Customer “Sue”, in the example of Figure 3,
then applying the item → orderlines/orderline rule is unnecessary because the
document does not match the query anyway. Such a situation cannot be detected
at compile time. The eager approach is particularly bad in the presence of
recursive mapping rules. An example for a recursive mapping rule is a → a/a.
If such a recursive mapping rule is applicable, the process of applying mapping
rules eagerly does not terminate because the recursive mapping rule is applicable
again and again to each new node that is created in the annotated tree.

The alternative to the eager approach is to interweave the processing of
mapping rules with the processing of queries and add edges to the annotated tree
lazily. This requires extensions to the query interpreter of a DSMS as shown in
Figure 5b. Specifically, the scan operator which navigates through an incoming
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message must be extended (all the other operators are unchanged). In a DSMS
which does not index incoming messages, scanning a message starts at the root
and involves iterating through parent-child relationships of each visited node.
Whenever the scan operator visits a child for the first time, it notifies the rule
manager and informs it of the newly observed node. No other extensions to the
scan operator are needed and there exists no memory overhead in the notification
step. The rule manager, in turn, checks which mapping rules are applicable to
the newly observed node and expands the annotated tree (adds edges and nodes)
if one or more mapping rules fire. This firing of mapping rules is depicted by
the expand arrow in Figure 5b. Newly created edges can be visited in the next
iteration of the scan operator which triggers additional notifications of the rule
manager. Transitivity in the application of rules is implemented in this way. We
describe how the rule manager determines which rules are applicable to a newly
visited node in the next subsection.

As will be shown in Section 5, the lazy approach performs much better than
the eager approach. Continuing the example from above, no mapping rules are
applied for Customer “Josh”, if no query asks for this order. Furthermore, the
lazy approach deals gracefully with recursive mapping rules. If a continuous
query asks for /a/a/a, the incoming message is <a/>, and there is a mapping
rule a → a/a, then the lazy approach applies this mapping rule exactly twice
in order to discover that the message matches the query, but not more than
that. If the continuous query involves recursion itself (e.g., //a), then even the
lazy approach does not terminate because the query has an infinite result [15].
Such situations cannot be avoided even in the absence of mapping rules because
XQuery is a Turing-complete programming language.

Rule Manager In order to detect when one or more mapping rules fire, the rule
manager implements a non-deterministic finite automaton (NFA) as proposed
in the YFilter project [8]. A single NFA is constructed in order to implement
the source expressions of all mapping rules. Whenever a source expression of a
mapping rule is matched, the NFA reaches an accepting state which indicates
the firing of a mapping rule. The accepting states of the NFA are annotated
with the target expressions of the corresponding mapping rules and a pointer
to the state that represents the root node of the source expression, denoted as
root of the rule. This root node is needed in order to detect the starting point
of the new edge added to the annotated tree that represents the message in the
storage manager. The target expression is evaluated when a mapping rule fires
in order to compute the end of the new edge, the labels of the new edge, and
possibly additional intermediary nodes and edges as shown in Figures 4c and d.

Figure 6 shows the NFA for a single and simple mapping rule, purchase-order
→ order. This rule fires whenever a purchase-order node is visited for the first
time. Consequently, the NFA reaches its accepting state (S2) whenever it is
notified of a purchase-order node. Whenever the NFA reaches State S2, the rule
manager adds an order edge from the root node to the node that triggered the
state transition.

Figure 7 shows how the NFA of Figure 6 would be extended if three mapping
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Figure 7. NFA for Multiple Mapping Rules

rules were added. This figure shows how the NFA implements the sharing of
prefixes of paths of the source expressions of several mapping rules. Further-
more, this automaton shows the need for annotating the states that correspond
to root nodes of source expressions if the source expression involves complex path
expressions. As in the automaton of Figure 6, the NFA of Figure 7 reaches an
accepting state (i.e., S2) whenever a purchase-order element is found; in this
case Rule R1 fires and operates in the same way as in the NFA of Figure 6. In
addition, the NFA of Figure 7 reaches an accepting state (i.e., S4) whenever an
item element is found; in this case Rule R2 fires. Finally, the NFA of Figure 7
reaches an accepting state if a sequence of purchase-order and netprice ele-
ments are found (i.e., S3); in this case, Rules R3 and R4 both fire. If two or more
rules fire at a state transition, these rules can be executed in any order because
annotations in the annotated tree are unordered as explained in Section 4.1.

The construction of NFAs for the purpose of indexing path expressions has
been described in full detail for YFilter [8]. In fact, YFilter can be directly
applied to implement the MDQ rule manager. YFilter also supports predicates
(not shown in the examples of this section, for brevity). As a result, YFilter
supports all possible source expressions in the mapping rules of Section 3.2,
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and our implementation of the rule manager makes use of the original YFilter
algorithms and data structures [8]. Only a small adjustment is needed in order
to implement a stack to compute the Root when a mapping rule fires. We
omit a description of the details of this adjustment in this paper for ease of
presentation.

5 Experiments and Results

We implemented both the query rewrite and MDQ approaches using the Saxon
XQuery engine. This section studies the performance of these two approaches
using the XMark benchmark [29], the TPoX benchmark [24], and a series of
micro-benchmarks. These benchmarks cover a wide spectrum of different use
cases.

5.1 Software and Hardware Used

All experiments were carried out using a machine with an AMD 2.4GHz CPU
and 6GB RAM running RedHat Enterprise 4. Both approaches (query rewrite
and MDQ) were implemented in Java 1.6 on top of Saxon 9 [16], a main memory
XQuery processor.

Query rewrite was implemented using a benchmark-specific pre-processor to
generate the rewritten queries. That is, the pre-processor was designed for these
specific benchmarks and we made sure in an additional manual step that the best
possible query rewritings were used in all cases. In particular, we made sure that
only relevant mapping rules were considered during the rewriting of each query.
That is, relatively few rules were applied to each query even in experiments
which involved thousands of schemas. As a consequence, the results for the
query rewrite approach are better than would be expected with a general-purpose
implementation of query rewrite. The rewritten queries were then executed using
Saxon as is; i.e., Saxon was not changed.

In order to implement MDQ, we extended the Saxon compiler and runtime
system as described in Section 4. Without any mapping rules the original Saxon
and the MDQ-enabled Saxon showed roughly the same performance, so our
implementation provides an apples to apples comparison of query rewrite vs.
MDQ in Saxon. We expect that similar extensions to other XQuery processors
would produce similar results, as we did not exploit any features specific to
Saxon in our implementation.

As a baseline, an ideal world was studied in all experiments. In such an ideal
world, all data and queries conform to the same schema and no mapping rules
are needed. These experiments could be carried out with “off the shelf” Saxon.
Obviously, the performance in an ideal world is better than the performance that
can be achieved using either query rewriting or MDQ to resolve heterogeneity.
Comparing the results for ideal with those for query rewrite and MDQ reveals
the cost of heterogeneity.

All experiments reported in this section study runtime performance only;
i.e., message throughput in a data streaming scenario and query response times
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for a traditional database scenario. In all experiments, the queries were pre-
compiled. Furthermore, the NFA for indexing all mapping rules was already
created. Messages were sent in a binary format (i.e., pre-parsed), but did not
contain any annotations for the MDQ approach. That is, the effort to create
these annotations was measured as part of the throughput and response times.
If several queries were executed on a single message, the annotations were shared
between all queries so that the same annotation did not have to be generated
twice.

Saxon is a streaming XQuery processor so it is a good match for these per-
formance experiments. Saxon, however, does not implement multi-query opti-
mization and other tricks to optimize and scale with the number of continuous
queries. Unfortunately, no XQuery product to date does this. As a result,
all experiments were carried out with a relatively small number of continuous
queries (at most twenty for the XMark benchmark). An interesting topic for
future work is to study the performance of the alternative approaches with an
XQuery processor that is tuned for scalability in the number of queries, once
one is available. However, we do not expect that such experiments will reveal
any significant differences in the trade-offs between query rewrite and MDQ.

5.2 Benchmark Environment

This section reports on results for three different benchmarks: XMark [29], TPoX
[24], and a set of micro benchmarks which we designed specifically to study effects
that could not be observed with the XMark and TPoX benchmarks.

The XMark benchmark models an online auction system and messages in-
volve bids on items [29]. The XMark queries vary from simple path expressions
that select certain properties of a message to complex queries that involve joins
and aggregation. We implemented all twenty queries of the XMark benchmark
and studied them individually (i.e., only one query is applied to each message)
and as a whole (i.e., all twenty XMark queries are applied to all messages). If
not stated otherwise, the XMark data generator was set to generate messages
of size of about 1.1 MB. In order to study the effects of different message sizes,
this parameter was varied from a few KBs to 100 MB in a separate experiment.

The TPoX benchmark models a finance institution and involves a database
of financial orders [24]. The TPoX queries vary from simple selection of orders
(based on their order number) to more complex queries (e.g., aggregates on a sub-
set of orders). Due to the nature of the queries and the TPoX data generator,
the TPoX benchmark cannot be applied as a measure of the performance of
data stream management systems. As a result, we used this benchmark in our
experiments in order to study the trade-offs of query rewrite and MDQ in a more
traditional database scenario. That is, we loaded the TPoX database into the
Saxon (in-memory) storage manager, ran the TPoX queries using Saxon, and
measured the response time (rather than message throughput) of each TPoX
query for both query rewrite and MDQ. Since Saxon has no support for indexes,
we used the smallest possible TPoX database which contains 200 MB of XML
data.
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The XMark and TPoX benchmarks were used to study the performance
trade-offs of a variety of queries, as well as database and message configurations
(i.e., size, data skew, and formats). Due to the complexity of the queries and be-
cause there is no general-purpose implementation of the query-rewrite approach
available yet, however, it was not possible to study different types of mapping
rules using the XMark and TPoX benchmarks. In order to simulate heterogene-
ity, we were limited to using aliasing mapping rules (i.e., rules of the form a→ x,
without path expressions and constructors) for these two benchmarks because
query rewrite is straight-forward to implement for such mapping rules. Specif-
ically, we took the original XMark and TPoX schemas as a starting point and
created new schemas by renaming all the element and attribute names. For the
XMark benchmark 46 mapping rules were generated per schema; for the TPoX
benchmark each schema involved adding 10 new mapping rules. Depending on
the query, however, only a fraction (between 5-10 for XMark, 2-10 for TPoX) of
these mapping rules were applicable for each query.

In order to study the effects of complex mapping rules, we also experimented
with micro benchmarks which were tailored for this specific purpose. For the
micro benchmark results reported in this paper, //x/y was used as the only
query and different sets of mapping rules were used, varying from aliasing rules
(i.e., a→ x), nesting / unnesting rules (i.e., a/b→ x/y), to element construction
(i.e., a→ <x/>).

In all experiments reported in this section, we varied the number of schemas
in order to study how well query rewrite and MDQ scale in this dimension. (Ob-
viously, query performance in an ideal world is independent of this parameter,
since there is only one schema.) From discussions with organizations that use
data integration technology, it seems that tens to hundreds of schemas are com-
mon today. With emerging standards such as HL7 and XBRL, we expect that
data integration of thousands of schemas will be required in the near future. Es-
tablishing interoperability between all hospitals of the USA would easily involve
such a large number of schemas. As a result, we varied the number of schemas
from tens to thousands, to cover the broad range of present and near-future
scenarios.

XMark Queries The first set of experiments studied the message throughput
of query rewrite and MDQ for the queries of the XMark benchmark and a vary-
ing number of schemas. Figures 8 to 10 show the throughputs for query rewrite,
MDQ, and ideal for three sample XMark queries: Q1 is a simple path expres-
sion; Q4 involves several path expressions with predicates; Q11 involves heavy
computation (joins and sorting), but does not involve sophisticated navigation
through the message with path expressions. For all three queries, it can be ob-
served that the throughput of MDQ is independent of the number of schemas
(i.e., the number of mapping rules), whereas the message throughput of query
rewrite drops sharply with an increasing number of schemas. As mentioned in
Section 4 the reason is that the size of the queries grows with the number of
schemas and that all (potentially relevant) mapping rules are encoded in every
query for every message even though only a small subset of mapping rules are
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Figure 10. msg/sec: XMark Q11

applicable to each particular message.
Depending on the kind of query, query rewrite sometimes performs better

than MDQ for data integration scenarios with relatively few schemas (e.g., for
Query 1 and Query 11 and less than 100 schemas). As a general trend, the
more navigation (with path expressions) is involved in a query the better MDQ
performs as compared to query rewrite even if only a few schemas need to be
integrated. In fact, Queries 1 and 11 represent two of only four queries of the
XMark benchmark for which there is a cross-over point between MDQ and query
rewrite; these are the only queries in which MDQ does not outperform query
rewrite regardless of the number of schemas (Table 2, discussed below).

Comparing MDQ to an ideal scenario (without any heterogeneity and map-
ping rules), it can be seen that MDQ typically comes within 50 percent of the
throughput of ideal; in many cases it comes even closer (Table 2). These re-
sults are encouraging because they show that good system performance can be
achieved even on heterogeneous and diverse data sources.

Table 2 shows the results of the complete XMark benchmark, varying the
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10 100 1000

MDQ QR MDQ QR MDQ QR Ideal

Q1 3281 4472 3221 1055 3233 64 7206
Q2 1513 1526 1585 379 1515 23 2565
Q3 744 496 735 77 740 3.0 1329
Q4 798 527 810 77 772 4.4 1498
Q5 3234 2080 2986 336 3171 16 5413
Q6 510 137 516 13 509 0.62 2278
Q7 286 60 285 6.1 282 0.28 1001
Q8 26 12 26 1.8 26 0.10 32
Q9 21 10 21 1.8 21 0.11 26

Q10 44 33 41 7.2 45 0.37 58
Q11 24 28 23 22 23 4.3 30
Q12 54 74 53 44 57 5.3 88
Q13 725 837 750 427 737 39 778
Q14 206 112 199 16 213 0.73 334
Q15 2648 1597 2627 214 2610 12 5846
Q16 1937 1347 1926 207 1837 8.7 3591
Q17 857 787 865 179 878 10 1352
Q18 1250 1002 1235 198 1215 11 2000
Q19 259 166 257 27 256 1.2 414
Q20 726 389 715 63 731 3.2 1066

All 5.2 3.2 5.2 0.63 5.1 0.03 6.5

Table 2. msg/sec: XMark Bench., Vary #Schemas

number of schemas from 10 to 1000. Overall, the results of Table 2 confirm
the observations made for Figures 8 to 10. Table 2 shows the message through-
puts of running every query individually, that is, assuming that it was the only
query executing against the stream of messages. Furthermore, Table 2 shows
the message throughput achieved when executing all twenty XMark queries on
every message (denoted as All in Table 2). Obviously, the message throughput
is much smaller if all twenty queries are executed than if only one query is ex-
ecuted. Comparing MDQ with ideal in the All case, it can be seen that MDQ
is quite close to ideal; its throughput is only about 20 percent below the ideal
throughput. One reason is that the effort to annotate the messages according
to the mapping rules is amortized across queries, when multiple queries are ex-
ecuted on each message. As a result, MDQ becomes more attractive the more
queries are executed on a single message. (In Table 2, query rewrite is denoted
as QR.)

Vary Message Size Figure 11 shows the throughputs of query rewrite, MDQ,
and ideal for XMark Query 1, 100 schemas, and a varying message size. That
is, the XMark data generator was configured to produce messages of different
size in this experiment. As can be seen, the message size has no impact on
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10 100 1000

Eager, No Index 0.77 0.078 0.0078
Eager, With Index 461 470 457
Lazy, With Index 3281 3221 3233

Table 3. msg/sec: XMark Q1, MDQ Variants

the trade-offs between query rewrite and MDQ. In this particular case, MDQ
outperforms query rewrite independent of the message size. These results were
confirmed by experiments made with the other XMark queries, TPoX queries,
and the micro benchmarks whose results are presented below.

5.3 Different MDQ strategies

We also used the XMark benchmark in order to study the importance of indexing
mapping rules and of a lazy approach to applying mapping rules as described in
Section 4.3. Table 3 shows the throughput of MDQ for XMark Query 1, a varying
number of schemas, and three different MDQ configurations. First, MDQ with
an eager approach to applying mapping rules and without a YFilter-index for
the mapping rules shows extremely poor performance. Likewise, the second
approach, an MDQ that eagerly applies mapping rules and uses a YFilter index,
shows poor performance. Neither of these approaches are competitive compared
to the query rewrite approach. Only the proposed MDQ variant (i.e., lazy and
with indexing of mapping rules) is competitive.

5.4 Micro Benchmarks

As mentioned in Section 5.2, we carried out a large number of micro benchmark
experiments which involved handcrafted queries, mapping rules, and messages
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in order to study the trade-offs of query rewrite versus MDQ for different sce-
narios. Overall, these experiments confirmed the results and observations made
with the XMark benchmark. For brevity, this section only reports on results that
were achieved by running simple path expression queries (i.e., //x/y) on sim-
ple messages of size 16kB, while varying the complexity of the mapping rules.
Figure 12 shows the message throughputs of query rewrite and MDQ with a
varying number of schemas, if the mapping rules involve only aliases (as in the
XMark benchmark). Figure 12 corresponds to Figure 8 and has roughly the
same shape. Figure 13 shows the results if the mapping rules involve nesting
and unnesting (i.e., path expressions as part of source and target expressions).
Figure 14 shows the results if the mapping rules involve element construction as
part of the target expression. As a general trend, it can be observed that MDQ
compares more favorably to query rewrite as the complexity of the mapping
rules increases. For unnesting rules and element construction, Saxon with the
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MDQ (cold) MDQ (hot) QR Ideal

Q1 125 78 1141 54
Q2 47 40 459 37
Q3 20 16 39 13
Q4 125 92 796 84
Q5 19 16 38 14
Q6 67 51 457 43
Q7 166 117 1192 73

Table 4. Resp. Time [msec]: TPoX, 100 Schemas

query rewrite approach crashed for more than 1000 schemas because of a stack
overflow.

5.5 TPoX Benchmark

The experiments with the XMark benchmark and all the micro benchmarks
studied the performance of query rewrite and MDQ in a data streaming envi-
ronment. This section gives initial performance results for static data; that is,
a more traditional database scenario. To this end, we use the TPoX benchmark
[24] which was designed to evaluate the performance of an XML database. As
mentioned in Section 5.2, the TPoX benchmark involves a database of financial
orders and queries of varying complexity.

Table 4 shows the running times of running the seven TPoX benchmark
queries with 100 schemas using the MDQ and query rewrite (QR) approaches
and in an ideal world (no heterogeneity). For MDQ, two scenarios were studied:

MDQ (cold): The TPoX database is stored in Saxon’s storage manager, but no
mapping rules have been applied yet. (That is, no additional edges or nodes
have been added to the tree representation of the documents.)

MDQ (hot): The TPoX database is already fully annotated with additional
edges and nodes after applying all relevant mapping rules. This was achieved
by running the whole benchark twice and measuring the second run only.

The results of this experiment confirm all the observations of the previous
experiments: MDQ clearly outperforms query rewrite; in some cases by as much
as an order of magnitude. Furthermore, MDQ is close to an ideal world without
any heterogeneity. Comparing the MDQ(cold) and MDQ(hot) running times, it
can be seen that the overhead of applying the mapping rules and adding edges
and nodes to the MDQ Data Model is roughly 20 percent in this experiment.
(The overhead varies for the individual queries.)

6 Conclusion

The key innovation presented in this paper is MDQ, a new query processing tech-
nique for virtual data integration. As compared to query rewrite, the state-of-
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the-art in query processing for virtual data integration, MDQ scales significantly
better in the number of mapping rules and schemas that need to be integrated.
To demonstrate the benefits of MDQ, we extended an off-the-shelf data stream
management system (DSMS) with MDQ, and compared the performance of the
extended DSMS to the same DSMS fitted with the traditional query-rewrite
approach. Our performance experiments show that MDQ significantly outper-
forms query rewrite for complex queries and rules. Furthermore, MDQ scales
better with an increasing number of mapping rules. Most surprisingly, it could
be shown that MDQ performs well compared to a DSMS in a perfect world (i.e.,
no heterogeneity in the data feeds or query schemas). In other words, this higher
level of data independence provided by MDQ was accomplished with reasonable
performance overhead.

There are several avenues for future work. One is to study MDQ for tradi-
tional heterogeneous query processing in a mediator [31] or federated database
system [11]. Our choice of rules in this first work was based on the practical
needs of the applications we studied; we would like to compare them to more
traditional mapping rules and rewriting engines [33, 25]. Another interesting
direction for future work is to expand our method to other kinds of rules; for
instance, a negative rule stating that two entities are not the same or rules that
model other relationships used in RDF Schema and OWL. This could potentially
allow ontologies as defined by the Semantic Web community to be integrated into
large-scale XML query processing using XQuery, bringing together benefits of
both the Semantic Web and Database worlds.
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