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Abstract— Recent work on QoS in Mobile Ad Hoc Networks
(MANETs) has shown that bandwidth needs to be reserved
in a distributed manner by also including interfering nodes.
However, in practice, QoS protocols have difficulties to locally
determine the set of nodes that actually interfere with a given
transmission. To solve this problem, it is not uncommon to
consider all nodes within a distance of k hops (k-neighbors)as
interfering nodes. In this paper we use Monte-Carlo methods
to study the correlation between the k-neighborhood of a node
and the set of interfering nodes. We compute expected valuesfor
both reservation recall – the fraction of interfering k-neighbors
to all interferers – and reservation precision – the fraction of
interfering k-neighbors to all k-neighbors. The two metrics reflect
the quality of a reservation and the loss of resources due to
over-reservation. We further investigate the impact of different
physical layer properties (e.g., fading) and network settings (e.g.,
network density) on the quality of the reservations. Our results
indicate that existing reservation techniques to ensure QoS are
inadequate and that new techniques are needed to efficiently
implement QoS in MANETs.

I. I NTRODUCTION

There are two generic approaches to provide QoS:
DiffServ[3] and IntServ [4]. In the DiffServ model, QoS is
provided by prioritizing flows at the ingress nodes. In the
context of Mobile Ad Hoc Networks (MANETs), DiffServ
has the advantage that no state information on intermediate
nodes has to be maintained and no explicit signaling is needed.
However, in MANETs, every node is a potential ingress node,
making admission control difficult. In addition, it has been
shown that simply dividing the resources into several priority
classes can not give any bandwidth guarantees to an individual
flow [2]. For these reasons, most of the work so far on
QoS for MANETs has been done using the IntServ model.
In IntServ, QoS is provided through reservations along the
transmission path. In MANETs, this is not an easy task due
to the need to maintain the reservations in the presence of
topology changes and bandwidth variations [13], [14], [10],
[9]. In addition, the shared nature of the transmission medium
requires reservations to be made not only on the transmission
path (active reservations) but also on potential interfering
nodes (passive reservations). As a result, recent work on QoS
in MANETs has focused on distributed bandwidth reservation
schemas that explore ways to efficiently place active and
passive reservations on a MANET. For instance, [8], [7],
[5], [12] use a distributed reservation scheme embedded in
the MAC layer. Reservations are mapped to an equal amount

of time slots at the MAC layer, and interference is avoided by
notifying neighboring nodes not to transmit any data during
these slots. As another example, [15] proposes a QoS routing
scheme that takes neighborhood interference into account.
The fundamental underlying problem for such distributed
reservation schemas is how to locally determine the set of
interfering nodes. Existing work bypasses this problem by
using the notion of k-neighborhood: all nodes within a distance
of k hops are considered as interfering nodes.

In this paper, we apply Monte-Carlo methods to analyze
the impact of using the k-neighborhood to identify interfering
nodes. We do so by introducing two novel concepts:reserva-
tion precision (how many nodes where reservations are placed
are really interferers) andreservation recall (how many nodes
where a reservation is needed are actually reserved). We then
study how reservation recall and precision evolve as functions
of node density, shadowing (radio fading). To the best of
our knowledge, this is the first attempt at quantifying the
impact of the use of the k-neighborhood on the efficiency of
distributed bandwidth reservation schemas. By itself, this is an
important contribution. Yet, the most significant contribution
of the analysis is what it shows. Our results suggest that there
is a inherent trade-off between the quality of a reservationand
the amount of resources wasted due to over-reservations. In
other words, current approaches can only achieve reasonable
QoS guarantees by indulging in severe over-reservation. Con-
sidering that in practice effects like mobility or transmission
errors would diminish the reservation quality even further, our
analysis makes it evident that existing distributed bandwidth
reservation techniques using the k-neighborhood approachare
not feasible in MANETs unless traffic is severely restricted.

II. PROBLEM STATEMENT

Figure 1 shows how a distributed bandwidth allocation
process looks when the set of interfering nodes is approxi-
mated with a 1-hop neighborhood. The network consists of 12
nodes, labeled fromA to L. Every node has a maximum of 4
nodes that are considered as neighbors: the one immediatelyto
its left and right and the one above and below it (e.g., nodes
B, E, G, J are neighbors of nodeF ). We assume a simple
TDMA-based channel allocation schema. We define anactive
reservation as the set of time slots to be used for transmitting
data. Apassive reservation is the set of time slots required to
remain unused in order to not interfere with the transmission.
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Fig. 1. Typical reservation process in the 1-hop case

Suppose nodeE wants to set up a bandwidth reservation for
a one-way communication with nodeG. For simplicity, let
the required bandwidth for the entire connection be 1 unit.
To begin with, nodeE locally makes a local 1 unit active
reservation to be used for transmitting data to its neighboring
node F (In a TDMA-based system this corresponds to a
reservation of one time slot). In a second step, nodeF has to
make sure that the reception of the packet from nodeE is not
disturbed by any transmission from interfering nodes. It does
so by placing a passive reservation in its 1-hop neighborhood.
In a TDMA-based system, this corresponds to informing all
the neighbors not to transmit in any of the time slots node
E uses to communicate with nodeF . In addition to the
passive reservation, nodeF makes a 1 unit active reservation
to transmit data to nodeG. Note that nodeF has both an
active and a passive reservation at that time. In a final step,
nodeG places passive reservations in its 1-hop neighborhood
to make sure that it is not disturbed by any interfering node
while receiving data from nodeF .

The problem with the reservation process shown in Figure 1
is that the 1-hop neighborhood does not match the set of
interfering nodes for any node. In fact, wireless interference
is complex and nodes far beyond the set of neighbors may
actually interfere with a certain transmission. Many proto-
cols use the k-neighborhood, withk ∈ {2, 3, 4, ...}, as an
approximation for the interference area. Obviously, the larger
k, the more interfering nodes will be covered, which increases
the quality of the reservation. However, the larger k, the
more likely it becomes that some of the nodes included
in the k-neighborhood do not actually belong to the set of
interfering nodes, leading to unnecessary reservations and
wasted bandwidth. This is illustrated in Figure 2 in the caseof
a 2-neighborhood and for a possible arrangement of interferers.

The proportion of interfering k-neighbors to all interferers
is called reservation recall. Reservation recall models the
quality of a reservation. Ideally, the reservation recall for a
given transmission would be one. This is the case when all
interfering nodes are also covered by the k-neighborhood.
The proportion of interfering k-neighbors to all k-neighbors is
calledreservation precision. Reservation precision models the
amount of resources that are wasted due to a reservation. For
instance, in a TDMA-based system, a low reservation precision
would mean that most of the reserved slots could actually
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Fig. 2. A possible arrangement of a 2-hop neighborhood and interfering
nodes.

be used without disturbing any of the ongoing transmissions.
Ideally, reservation precision would be one; this is the case if
the k-neighborhood contains no nodes that are not interfering.
In a perfectly distributed reservation, if the k-neighborhood
exactly matches the set of interfering nodes, both reservation
recall and reservation precision would be one. We will see that
this is hardly the case in random topologies and that optimizing
for recall is achieved at the cost of precision, and vice versa.

The remaining part of this paper is structured as follows.
The next section describes the network model. In section IV
we define reservation precision and recall. These two metrics
are then used in section V to assess distributed bandwidth
reservations in random networks. The paper concludes with
section VI.

III. N ETWORK MODEL

Let N be the set of nodes in the network. We assumexn ∈
R2 to be the coordinate of noden, identifying the node’s
position with respect to a rectangular areaA. We consider the
setN of nodes to be uniformly distributed inA. Each node
n in the network is supposed to transmit with a signal power
P t

n ∈ [0,∞[. We use the tuple notation(n
′

, n) to refer to the
transmission from a noden

′

to a noden. For a certain signal
propagation functionϑ, Pn←n′ = ϑ(P t

n′
, |xn−x

′

n|) ∈ [0, P t
n′

]
denotes the power of the received signal at noden due to the
transmission(n

′

, n). In the simplest case,ϑ is a direct function
of the distance. The path loss radio propagation model, for
example, definesϑpl(p, l) = p · (l/l0)

−ρ for some path loss
exponentρ, andl0 as a reference distance for the antenna far-
field. A more sophisticated model is the log-normal shadowing



Algorithm 1 Computes interfering nodes

Input: Transmission(n
′

, n) ∈ Dn

Output: Minimum Set of interfering nodesM
n←n

′

1: M
n←n

′ := ∅;

2: L := sort(N\{n, n
′

}) such thatn
′′

≺ n
′′′

←→ P
n←n

′′ < P
n←n

′′′

3: M∗ := ∅;
4: for all n

′′

∈ L do
5: M∗ :=M∗ ∪ {n

′′

}
6: if κsinr(n

′

, n,M∗) = 0 then
7: M

n←n
′ :=M

n←n
′ ∪ {n

′′

}
8: end if
9: end for

radio propagation [11]:

ϑsh(p, l) = p · (l/l0)
−ρ · 10χ/10 (1)

whereχ is a gaussian random variable with zero mean and
standard deviationσ and ρ is the aforementioned path loss
exponent. In case ofσ = 0, there is no random effect and
ϑsh ≡ ϑpl. In this work, we assume the physical signal
propagation to be symmetric. Thus, the gaussian random
variableX involved in the computation ofPn←n′ is the same
as the one involved in the computation ofPn′←n

1. From
practical measurements, however, it is known that the signal
strengthsPn←n′ and Pn′←n, corresponding to transmissions
of two identical radio transmitters, may not always be equal.
This is due to tiny differences of the radio hardware and is
taken into account in our model by the power distributionP t

n.
Whether a signal from a noden′ can be decoded correctly

at noden in the absence, or the presence, of concurrent
transmissions, is determined by the amount of interference
perceived at the given node. To simplify later formalism, we
define an interference functionκsinr as follows:

κ(np, n, I) =











1
P

n←n
′

P∗
n
+
P

n
′′
∈I

P
n←n

′′
> βsinr

0 otherwise.

(2)

for some thresholdβsinr and P ∗n as the thermal noise per-
ceived at noden. We now defineDn as the set of nodes that
can correctly be decoded at noden in the absence of any other
concurrent transmission:

Dn = {n
′

∈ N | κ(n
′

, n, ∅) = 1} (3)

Due to the different power levels of the nodes, it might
happen thatn

′

∈ Dn but n 6∈ Dn′ . Many medium access
protocols, however, require symmetric links because they are
based on acknowledgements. We therefore define the set of
symmetric links in the network as

E = {(n
′

, n) ∈ N ×N | n
′

∈ Dn ∧ n ∈ Dn′ }. (4)

IV. RESERVATION RECALL AND PRECISION

1ThereforeP t
n
≡ P t

n
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Fig. 3. Computing the set of interfering nodes. The straightline arrows
represent the transmissions. The dotted arrows denote signals which contribute
to the interference noise of transmissione1. The weight assigned to an edge
corresponds the signal strength. We assume the thermal noise P ∗ used in
Equation 2 to be 1. According to Algorithm 1, nodes in the greyarea are
considered as the smallest set of nodes such that the remaining cumulated
interference does not prohibit transmissione1 to be established.

Given a link e = (n
′

, n) ∈ E and a set of nodesQn←n′

holding passive and active reservations for this link, we would
ideally like κsinr(n

′

, n,N \ Qn←n′ ) to be 1. This is the
case whenQn←n′ exactly matches the set of interferers
for the given transmission. The minimum set of interferers
Mn←n′ for a link e = (n

′

, n) can be computed by gradually
testing κsinr with an increasing set of interferers, starting
with the noden

′′

contributing the lowest signal powerPn←n′′

(Algorithm 1). How the algorithm operates is demonstrated in
Figure 3 based on a small example network of 7 nodes.

Reservation recall and precision are comparisons of the set
of interferers with the k-neighborhood. The k-neighborhood is
defined to be the set of all nodes that can be reached within k
hops, including the node itself. Which nodes can be reached
within k hops from a given source node is determined by the
routing functionη : N × N −→ P(E). For a given source-
destination pair(n

′

, n) the resulting route simply consists of
the set2 of edges included in the sequencee0, e1...ek−1, with
ei = (ni, ni+1) ∈ E and n0 = n

′

and nk = n. With the
routing functionη, the k-neighborhood of a noden is

k-NHn = {n
′

∈ N | |η(n
′

, n)| <= k}. (5)

Reservation recall and precision are formally defined on
a per edge basis. Reservation recallRk

n←n′
is the ratio of

interfering k-neighbors to all interferers:

Rk
n←n′

=
| k-NHn ∩Mn←n′ |

| Mn←n′ |
. (6)

Reservation precisionP k
n←n′

is the ratio of interfering
k-neighbors to all k-neighbors:

P k
n←n′

=
| k-NHn ∩Mn←n′ |

| k-NHn |
. (7)

Let R̄k andP̄ k be the average reservation recall and preci-
sion of a given network. For a concrete network deployment,
R̄k and P̄ k correspond to concrete numbers. For a certain
network family, R̄k and P̄ k could be considered as random
variables. A network family might consist of, e.g., all networks

2Practically, a route would be modeled as a sequence rather than as a set;
however, since we assume no loops and the order of the edges ina route is
not important we prefer the set notion which simplifies further treatment.



with 200 nodes distributed uniformly in a rectangular of
2000m×2000m. It would be of interest to know the expected
average precision and recall (E[P̄ k] and E[R̄k]) for a given
network family. Deriving the expected average precision and
recall analytically would require determining the probability
density function of the random variables. In this paper we do
not pursue an analytical treatment ofE[P̄ k] and E[R̄k] but
rather use a Monte-Carlo estimator. This is illustrated below
on the example ofE[R̄k]. We approximate the expected value
of E[R̄k] for a given network family by sampling overm
realizations of the underlying random network, withXi as a
concrete set of node placementsX in the areaA andf(·) as
the probability density function ofX :

E[R̄k] =

∫

R2N

E[R̄k|X = X ]f(X)dX

≈
1

m

m−1
∑

i=0

E[R̄k|X = X∗i ]

(8)

Due to the linearity of the expected average reservation
recall, E[R̄k] corresponds to the expected reservation recall
of a uniformly chosen edge.

E[R̄k] = E[
1

|E|

∑

(n,n′)∈E

Rk
n←n′

]

=
1

|E|

∑

(n,n′ )∈E

E[Rk
n←n′

] = E[Rk
n←n′

].
(9)

We refer toRk and P k as the approximation values for
E[R̄k] andE[P̄ k].

In using Monte-Carlo methods to computeRk andP k, the
paper also suggests a new approach to ad hoc network analysis
in cases where pure analytical approaches fall short, and
protocol specific network simulations are not generic enough.

V. PRECISION AND RECALL IN RANDOM NETWORKS

A. Network settings

We study reservation recall and precision,Rk andP k, under
different network densities and signal propagation settings.
The network configurations we consider consist of randomly
deployed nodes within a square of varying size. We use
the log-normal radio propagation model (Equation 1) and if
nothing else is mentioned, the path loss coefficientρ and the
shadowing deviationσ are fixed to be4 and0 respectively. For
the interference model (Equation 2) we use a thresholdβsinr

of 4 decibel, which is the lowest tolerable threshold of an
Orinocco PCMCIA Silver/Gold wireless network card so that
it can still function at a rate of 1Mbps [1]. The transmission
power for every node is kept constant and the thermal noise
P ∗ is adjusted in a way that the resulting transmission range
becomes200m2. We use Equation 8 with a sample sizem
of 1000. For routing, we use the shortest path algorithm by
Floyd and Warshall [6]. In order to minimize the effect of the
network border, we use a specialscope, E∗ ⊂ E , to compute

precision and recall. The scope we use includes all edges
where one or both nodes are located within a circle with radius
4/10 of the network length, and with its origin at the center
of the network area.

B. Recall/Precision Trade-off

Figure 4a shows the reservation recall and precision for
different values ofk. As can be observed, there is a clear
trade-off between reservation recall and precision. Maximizing
for recall (by choosing a bigger value for k) reduces the
precision of the reservation. The result is disappointing since
it says that in a network where nodes are deployed randomly,
a good reservation quality can only be achieved with an
extensive distributed reservation which entails an enormous
waste of bandwidth. Figure 4b shows the traditional recall
precision scatter-plot for the same network setting as we used
in Figure 4a. The scatter-plot includes a point for every oneof
the 1000 samples taken. The x and y coordinates of the dots
refer to the corresponding recall and precision values of the
sample. The plot includes samples for values ofk from 1 to
8. The scatter-plot illustrates the trade-off between reservation
recall and precision: a high precision implies a low recall and
viceversa. Why it is unfeasible to choose a value fork that
maximizes both reservation recall and reservation precision is
shown in Figure 4c. The Figure shows the average distribution
of the interfering nodes with respect to their hop distance
measured from the node they interfere with. As can be seen,
the distribution’s peak is around 3 hops. Choosing a value of
3 for k, however, does not take the tail of the distribution
into account. Since the tail is not negligible, a large set of
interferers is not covered. Choosing a value of10 or 11 covers
the nodes at the tail of the distribution, but at the same time,
includes many nodes which are not interfering at all.

C. Impact of network density

We now explore how recall and precision are affected by the
network density. We look at a network of size2000m×2000m
while deploying an increasing number of nodes. As can be
inferred from Figure 4d, reservation recall drops with an
increasing network density ifk is smaller than 3, but increases
with the network density ifk is greater than 3. This behavior
is a direct consequence of the fact that the number of nodes in
a disc grows with the square of the radius of the disc. Imagine
a simplified view where the k-neighborhood is represented by
all nodes located in a discdk with radiusrk and all interfering
nodes to be the nodes located in another discdI with radius
rI . If the network density grows, obviously the number of
nodes withindI grow faster than the number of nodes indk, if
rI > rk. This is what happens in Figure 4d whenk is smaller
or equal than3. Since with increasing node density the number
of interfering nodes increases faster than the number of nodes
within the set k-NH, the reservation recall drops. If, on the
other hand,k is greater than3, thenrk becomes larger than
rI and the opposite happens: with increasing node density, the
number of nodes in k-NH increases faster than the number
of interfering nodes, which improves the reservation recall.
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Fig. 4. Recall and Precision

While the influence of the network density on reservation
recall very much depends on the value ofk, its effect on
reservation precision is more consistent and also more modest.
From Figure 4e we see that the reservation precision slightly
improves as the network density increases. The reason is that
the set of interfering nodes grows a little faster than the
k-neighborhood for an increasing network density.

D. Impact of radio propagation

So far, we fixed the path loss and the shadowing deviation
of the radio propagation (Equation 1) to be4 and 0 respec-
tively. However, it is clear that both path loss and shadowing
deviation must have an impact on the interference perceived
at a given node. Figure 4f-g illustrate the effect of the path

loss coefficient on recall and precision. It is shown that the
bigger the path loss coefficient, the higher the recall (at the
expense of a lower precision). The reason is that a high path
loss coefficient makes the signal drop below the interference
threshold very quickly and thus makes the set of interfering
nodes approach the 1-hop neighborhood. That’s why – already
for a k of 1 – the recall for a path loss coefficient of8
becomes bigger than 0.8. On the other hand, the precision
drops very quickly for high path loss values (Figure 4g). This
is because most nodes outside the 1-hop neighborhood no
longer interfere. In both Figures 4f and 4g no fading effects
are considered (σ = 0). However, such a setting refers to an
ideal transmission range (circle) which is rarely the case in
practice. Much more realistic values forσ are values in the



range of2–10, depending on the network environment [11].
Figure 4h shows how reservation recall evolves when the
radio propagation becomes irregular. From the Figure, we
observe that for a given value ofk, the reservation recall
improves asσ increases. Why this is the case can easily
be seen when looking at the received signal strength under
fading. The expected received signal power in the log-normal
shadowing radio propagation model (Equation 1) computes to

pr = pt

(

r
d0

)−ρ

exp
( log(10)2

200 σ2
)

, which increases withσ. It
follows that the set of decodersDn increases and therefore
so does the set of of k-neighbors, which improves the overall
reservation recall. How the reservation precision is affected by
irregular radio propagation is illustrated in Figure 4i. Itcan be
observed that the reservation precision drops asσ increases.
This is what we would expect since the higher the values for
σ the more randomness is induced into the signal. As the
randomness increases, the correlation between the number of
hops of a source destination pair and its euclidian distanceis
reduced.

VI. CONCLUSIONS

In this paper we use Monte-Carlo methods to study the
performance of existing bandwidth reservation schemas in
MANETs. In particular, we have shown that there exists a
clear trade-off between reservation recall and precision since
optimizing recall is done at the cost of precision. This says
that in a network where nodes are deployed randomly, a good
reservation quality can only be achieved with an extensive
distributed reservation which entails an enormous waste of
bandwidth. In the paper, we have also shown that irregular
radio propagation diminishes the reservation precision but
improves the recall. One reason for this is that the set of
nodes in a k-neighborhood grows under fading, which then
increases the interference coverage. In this work, we consid-
ered only static networks. One could imagine that the situation
deteriorates even more in mobile scenarios, where nodes
occupying a reservation leave the interfering area at some
point in time. The conclusion is that distributed bandwidth
reservations are inadequate to provide QoS in MANETs and
that other techniques have to be considered, e.g., prioritybased
approaches.
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