
Query Log Attack on Encrypted Databases

Tahmineh Sanamrad and Donald Kossmann

Department of Computer Science,
Swiss Federal Institute of Technology,

Zurich, Switzerland
{Tahmineh.Sanamrad,Donald.Kossmann}@inf.ethz.ch

Abstract. Encrypting data at rest has been one of the most common ways to pro-
tect the database data against honest but curious adversaries. In the literature there
are more than a dozen mechanisms proposed on how to encrypt data to achieve
different levels of confidentiality. However, a database system is more than just
data. An inseparable aspect of a database system is its interaction with the users
through queries. Yet, a query-enhanced adversary model that captures the security
of user interactions with the encrypted database is missing. In this paper, we will
first revisit a few well-known adversary models on the data encryption schemes.
Also, to model the query-enhanced adversaries we additionally need new tools,
which will be formally defined. Eventually, this paper introduces query-enhanced
adversary models which additionally have access to the query logs or interact with
the database in different ways. We will prove by reduction that breaking a cryp-
tosystem by a query-enhanced adversary is at least as difficult as breaking the
cryptosystem by a common adversary.

Keywords: Database Encryption, Query Rewrite Function, Query-Enhanced Ad-
versary Models

1 Introduction

In the recent past, there has been significant interest in processing queries on encrypted
data without decrypting the data. The goal is to protect the confidentiality of data against
honest but curious attackers who have powerful access rights on the machines that host
and process the data; e.g., system administrators with root privileges. There has been a
lot of work on proposing query-able data encryption schemes such as [1, 4–7, 11].

However, data is not the only source of information for the adversary in a database
system. Interactions with a database through queries and transactions might also lead
to confidentiality leaks. Thus, in order to prove the level of data confidentiality in a
database system, it does not suffice to only look at the adversary models which solely
operate on the data. Therefore, new and enhanced adversary models are required to
capture the confidentiality of the database query logs. The goal in this paper is to in-
troduce such enhanced adversary models that independent of the encryption scheme try
to break the cryptosystem by looking at the query logs. So far there has been no single
work dedicated to model the query log attack on encrypted databases.

2 Tahmineh Sanamrad and Donald Kossmann

In this paper we assume to have a client-server architecture, where the client is
trusted and the database server is completely untrusted. We assume to have a thin en-
cryption layer residing on a trusted party, either on the client itself or on a trusted se-
curity middleware. This thin encryption layer sits between the client and the untrusted
database server. The main task of the encryption layer is to adjust the plaintext queries
written by the clients in such a way that the encrypted database can process them. Upon
receiving the query results, the encryption layer decrypts the result sets and sends them
back to the client. Client is assumed to be unaware of the encryption layer in between,
i.e. the encryption layer is transparent to the client. This model is assumed by almost
all the database systems supporting encryption such as [2, 6, 8, 10, 12, 14].

Now the main problem is how secure are these rewritten queries that are submitted
to the untrusted database server. The encryption layer rewrites the queries based on the
encryption scheme used to encrypt the data. There are however a number of examples
on how the queries may leak additional information to the adversary. For example,
some queries can reveal secrets about their underlying encryption scheme. Additionally,
the query log itself provides the adversary with additional information about the client
submitting the query, timestamp and submission frequency.

Since in a database system, data and queries are intertwined we need to carefully
separate these two during security analysis. In the beginning of this paper we will ex-
plain the assumed architecture in more detail. Then, we will revisit the well-known
adversary models on encrypted data, namely Ciphertext-only Attack, Known-Plaintext
Attack and Chosen-Plaintext Attack. More concretely, this paper makes the following
contributions::

– First contribution of this paper is the introduction and formal definition of new
tools required to analyze a query-enhanced adversary, such as a one-way Query
Rewrite Function (QRF) that takes an encryption scheme and an original query
from the client as input and outputs a rewritten query for the encrypted database, a
Query Simulator (QSim) that can simulate rewritten queries just by looking at the
query logs and the encrypted data, and a Query Generator (QGen) that can generate
original queries out of plaintext values.

– Second contribution of this paper are the query-enhanced adversary models.

– Third contribution is to prove that regardless of the chosen encryption scheme,
the security guarantee that a database encryption scheme can give against a query-
enhanced adversary is at least as much as the security guarantee that the database
encryption scheme can give against a common adversary.

This paper is structured as follows: Section 2 revisits the common attacker scenarios
on encrypted data. Afterward, Section 3 introduces the formal notions that will serve
as building blocks in the query-enhanced adversary models. Eventually, Section 4 in-
troduces the query-enhanced adversary models and proves by reduction that analyzing
the security of the query logs can be replaced by the common security analysis on the
underlying encryption scheme.

Query Log Attack on Encrypted Databases 3

2 Preliminaries

In this section, we will first go over our assumptions regarding the system’s architecture
and security. Then, we revisit a few well-known attacks on the encryption schemes,
namely Ciphertext-only Attack, Known-Plaintext Attack and Chosen-Plaintext Attack.

2.1 Client-Server Architecture

Figure 1a shows the traditional client-server architecture of running applications on top
of a database system. The application or end user issues SQL statements to the database
server. The database server executes these SQL statements and returns the results.

Client Client

SQL

DB

(a) Traditional

Client Client

SQL

Encrypted

DB

SQL‘

Encry. Layer

tr
u
st

ed

u
n
tr

u
st

ed

(b) Encryption Layer

Fig. 1. Extended Client-server Database Architecture

Figure 1b shows an abstraction of the security-extended architecture. In this archi-
tecture, the application is unchanged and issues the same (unencrypted) SQL statements
as in the traditional system of Figure 1a. In the following we will describe each compo-
nent and its security assumptions in the security-extended architecture.

– Encrypted DB is the database server containing the encrypted data. In this pa-
per the database server and all its components (e.g. main memory, CPU, ...) are
assumed to be untrusted, however the server is not actively malicious.

– Encryption Layer implements the confidentiality. This layer can be seen as a
trusted server namely a security middleware as in [6, 10, 13, 14], it can be seen
as a secure co-processor within the database server as in [2, 3], or it can be an
added module on the client’s machine. The critical assumption is that this layer is
trusted. The encryption layer is responsible for adjusting (rewriting) the queries to
be processed on the encrypted data, and thereafter this layer needs to decrypt and
if necessary post-process the query results.

– Client can be an end user or an application developer and is assumed to be trusted.

2.2 Attacks on Ciphers

In this section we go over the most common attack scenarios on the encryption schemes.
These scenarios will be used in the reduction proofs in Section 4, where we define the
query-enhanced adversaries.

4 Tahmineh Sanamrad and Donald Kossmann

Notation. Let x denote a plaintext value from the set of plaintext values,X . Respec-
tively, let y denote a ciphertext value from the set of ciphertext values, Y . Let Enc(τ, x)
be the encryption function of an arbitrary encryption scheme, ES and τ the randomness

element possibly required by the Enc function. x $← X simply means that a vector of
plaintext elements have been chosen uniformly at random. The $ implies a uniformly
random selection from a set.

Experiment. An Experiment1 is a probabilistic system that is connected to an Ad-
versary2, A, on its left interface as shown in Figure 2 and at the right interface outputs
a bit (0 or 1) indicating whether the Experiment is won. The Experiment is denoted as
EXP throughout this paper.

A 0/1 EXP
...

Fig. 2. An Experiment interacts with an adversary and in the end shows whether the adversary
has succeeded.

Adversary. An adversary (attacker) is (or has access to) an algorithm that inter-
acts with the experiment and its goal is to succeed in the experiment. The adversary is
denoted as A.

Advantage. The advantage of an adversary, A, playing an experiment, EXP, is the
success probability of A winning EXP, i.e. The experiment outputs 1 on its right inter-
face. The advantage of A succeeding in EXP is denoted as AdvEXP(A).

Ciphertext-only Attack (CoA) In a Ciphertext-only Attack the attacker is given only
a series of ciphertexts for some plaintext unknown to the attacker [9]. If an attacker can
succeed in a Ciphertext-only Attack, it means that he could succeed in the following
experiment:

Experiment 1 : ExpCoA
ES (A)

τ
$← T ; x $← X

y← EncES(τ, x)
x

$← A(y)
if x ∈ x then return 1
else return 0

Experiment 1 chooses uniformly at random a vector of plaintext values, x. It then
encrypts them using the EncES(τ, x) function to obtain a vector of the corresponding ci-
phertext values, y. The adversary then receives y and runsA(y). The adversary succeeds

1 An Experiment is also called a Game in some security literatures.
2 An Adversary is also called a Winner in some security literatures.

Query Log Attack on Encrypted Databases 5

if the plaintext value he returns, is in the plaintext vector chosen in the beginning by the
experiment, in other words A succeeds if x ∈ x. The advantage of the Ciphertext-only
attacker on an arbitrary encryption scheme, ES , is denoted as: AdvCoA

ES (A).

Known-Plaintext Attack (KPA) In a Known-Plaintext Attack the attacker is given a
couple of plaintext-ciphertext pairs [9]. The goal of the attacker is to distinguish pairs
of ciphertexts based on the plaintext they encrypt which were not initially given. Indis-
tinguishability under Known-Plaintext Attack is captured through the following experi-
ment:

Experiment 2 : ExpIND-KPA
ES (A)

τ
$← T ; x $← X

y← EncES(τ, x)
(x1, x2)

$← X s.t. x1, x2 /∈ x
b

$← {0, 1}
yb ← EncES(τ, xb)

b′
$← A(x, y, (x1, x2), yb)

if b′ = b then return 1
else return 0

Experiment 2 chooses uniformly at random a vector of plaintext values, x. It then
encrypts these values using the EncES(τ, x) function to obtain a vector of the corre-
sponding ciphertext values, y. Then the experiment chooses randomly two plaintext
values, (x1, x2) s.t. x1, x2 /∈ x, flips a coin and encrypts randomly one of them,
yb = EncES(τ, xb). The attacker is then given both x and y, (x1, x2) and yb. Based
on yb and the information he may extract from the known Plaintext-Ciphertext pairs,x
and y, the attacker tries to find out whether x1 or x2 was encrypted. The probability
that an attacker can succeed in this experiment is denoted as the IND-KPA advantage,
AdvIND-KPA

ES (A) and is optimal if an attacker cannot do better than to randomly guess b,
i.e. AdvIND-KPA

ES (A) ≤ 1
2 .

Chosen-Plaintext Attack (CPA) In a Chosen-Plaintext Attack the attacker is given
plaintext-ciphertext pairs for the plaintext vector chosen by the attacker [9]. The goal
of the attacker is to distinguish pairs of ciphertexts based on the plaintext they encrypt
which were not initially chosen by the attacker. Therefore, the attacker, A, consists of
two functions A = (A1, A2). A1 chooses a vector of plaintext values and A2 tries to
distinguish which plaintext was encrypted. Indistinguishability under Chosen-Plaintext
Attack is captured through Experiment 3.

The adversary, using A1, chooses a vector of plaintext values, x, and gives it to
the experiment. The experiment encrypts these values using the EncES(τ, x) function
to obtain a vector of the corresponding ciphertext values, y. Then, the adversary again

6 Tahmineh Sanamrad and Donald Kossmann

Experiment 3 : ExpIND-CPA
ES (A)

τ
$← T ; x←A1(X)

y← EncES(τ, x)
(x1, x2)←A1(X) s.t. x1, x2 /∈ x
b

$← {0, 1}
yb ← EncES(τ, xb)

b′
$← A(x, y, (x1, x2), yb)

if b′ = b then return 1
else return 0

chooses two plaintext values, (x1, x2) s.t. x1, x2 /∈ x and gives it to the experiment.
The experiment flips a coin and encrypts randomly one of them, yb = EncES(τ, xb). The
attacker is then given both x and y, (x1, x2) and yb. Based on yb and the information he
may extract from his chosen Plaintext-Ciphertext pairs,x and y, the attacker tries to find
out whether x1 or x2 was encrypted. The probability that an attacker can succeed in this
experiment is denoted as the IND-CPA advantage, AdvIND-CPA

ES (A) and is optimal if an
attacker cannot do better than to randomly guess b, i.e. AdvIND-CPA

ES (A) ≤ 1
2 .

3 New Definitions

In order to define new and query-enhanced adversary models we need additional func-
tions that can capture the query transformations in the client-server architecture men-
tioned in Section 2.1.

Notation. Let the set of all queries a client sends to the encryption layer be denoted
as Qx and the set of rewritten-queries by the encryption layer to be processed on the
encrypted database be Qy . Respectively, an original query submitted from the client
is denoted as qx ∈ Qx and similarly a rewritten query submitted to the untrusted and
encrypted database server is denoted as qy ∈ Qy . Qs

x denotes a subset of queries from
Qx and respectively, Qs

y ⊆ Qy .
Query. In this paper whenever we talk about a query, an SQL query is meant. How-

ever, our query-enhanced adversary models can be used also for other type of queries
(e.g. information retrieval queries).

Running Example. Consider a relation customer(id,name,age,salary,city) in the
encrypted database. The following query, qx, is sent by the client to the database server:

SELECT SUM(salary) FROM customer
WHERE city = ’Zurich’ and age <= 30

Since the database is encrypted, the client’s query is intercepted by the encryption
layer and rewrites the query in a way, so that it can be processed by the encrypted
database.

Query Tokens. These tokens are the pieces of data in the SQL query. Query tokens
can be in plaintext, for example given the query of our running example, the query
tokens are ’Zurich’ and 30. Query Tokens can also be in ciphertext.

Query Log Attack on Encrypted Databases 7

Query Rewrite Function (QRF). The Query Rewrite Function is a function that
takes an original query qx, and an encryption scheme ES as input and outputs the
rewritten query qy , QRF (ES, qx) = qy . Depending on the encryption scheme, qx
will be rewritten differently. For example, having data encrypted in the database with
the deterministic AES, the query of our running example, qx, is rewritten as follows
QRF (AES, qx) = qy:

SELECT salary,age FROM customer
WHERE city = EncAES(’Zurich’)

Why the rewritten query having a deterministic AES scheme looks like above is
not in the scope of this paper. In brief, deterministic AES is neither homomorphic (no
support for the SUM aggregate function), nor order preserving (no support for the range
condition), but it is deterministic and therefore equality-preserving.

Query Generator (QGen). The Query Generator is a function that takes a vector
of plaintext query tokens, x, as input and generates a set of SQL queries Qs

x using the
tokens in x. QGen is independent of the encryption scheme, ES . QGen has an inverse
function, x = QGen−1(Qs

x) which outputs the plaintext query tokens of its input set.
Figure 3, shows how QGen works for our running example.

QGen
x = [‘Zurich’,30]

Qx
s = {(SELECT * FROM customer WHERE city=‘Zurich’),

 (SELECT * FROM customer WHERE age=30)}

Fig. 3. QGen takes plaintext query tokens as input and builds a set of SQL queries out of them.

Query Simulator (QSim). Parallel to QGen but in the ciphertext space, the Query
Simulator takes a vector of ciphertext query tokens, y, as input and generates a set of
SQL queries, Qs

y , using the tokens in y. QSim is independent of the encryption scheme
and is allowed to use the query logs in Qy . QSim has an inverse function too, y =
QSim−1(Qs

y). Figure 4, shows how QSim works for our running example, assuming
that EncAES(’Zurich’) = EG42KL23.

QSim
y = [EG42KL23] Qy

s = {(SELECT * FROM customer WHERE city= EG42KL23)}

Fig. 4. QSim takes ciphertext query tokens as input and builds a set of rewritten SQL queries out
of them.

8 Tahmineh Sanamrad and Donald Kossmann

Remark 1 QGen and QSim are functions that do not change their input, x and y re-
spectively, but wrap them in an SQL query.

Figure 5, illustrates the above introduced functions. These functions will serve as
building blocks in our adversary models and proofs.

QRF
ES

Qx

Qy

QGen

x

Qx

QGen-1

Qx

x

QSim

y

Qy

QSim-1

Qy

y

Fig. 5. Basic Functions used in the Query Log Adversary Models

In the remainder of this section, we introduce and formally define the adversary
models. We prove that each adversary model on the query logs can be reduced to a
known adversary model on the underlying encryption scheme.

4 Adversary Models

Database Adversary: Let us define the database adversary, ADB, to be an adversary
that has access to everything on the database server, namely the set of rewritten queries,
Qy , the encrypted data, Y , and eventually the encrypted result sets which are the result
of runningQy on Y . We also assume that the database schema is public, i.e. a database
adversary knows about the tables, attributes, attribute types, foreign keys and so on.

Proof by Reduction: To prove that Problem B (with unknown complexity) is at
least as hard as Problem A (with known complexity), one solves Problem A using the
solver of Problem B. It suffices to find an efficient3 transformation, φ between the Solver
of Problem B, T into the Solver of Problem A, S, i.e. S = φ(T).

4.1 Query-Only Attack

Query-only Attack (abbreviated as QoA) is when the database adversary ADB has only
access to the rewritten query logs namely, Qy . The advantage of a database adversary,
ADB, to succeed in a Query-only Attack, is defined as his probability to win the Experi-
ment 4:

AdvQoA
ES (ADB) = Pr[ExpQoA

ES (ADB) = 1]

The experiments ExpQoA
ES (ADB) is defined as follows:

In the following we will prove that the Ciphertext-only Attack discussed in detail in
Section 2 can be reduced to a Query-only Attack.

3 Polynomial-time in the size of the input

Query Log Attack on Encrypted Databases 9

Experiment 4 : ExpQoA
ES (ADB)

x $← X
QS

x ← QGen(x)
QS

y ← QRF (ES, QS
x)

xt
$← ADB(QS

y)
if xt ∈ x then return 1
else return 0

Lemma 1 Given an encryption scheme ES and a subset of rewritten queries, QS
y ∈

Qy , ES is at least as safe against Query-only Attack as ES is safe against Ciphertext-
only Attack. AdvQoA

ES (ADB) ≤ AdvCoA
ES (A)

Proof. Let ES be an arbitrary encryption scheme. Suppose ADB is an adversary with
non-trivial QoA advantage against ES . We construct a Ciphertext-only adversary A
against ES . As per definition in the Ciphertext-only experiment1, A is given a vector
of encrypted values, y. A runsQSim(y) to simulate QS

y . Eventually, A runs ADB(QS
y).

A’s communication with ADB mimics the QoA experiment. Clearly, A is efficient since
QSim is sublinear to the size of its input.

4.2 Known-Query Attack

Known-Query Attack (abbreviated as KQA) is when the database adversary ADB has
access to a number of (qx, qy) pairs. For example assume qx is:

SELECT SUM(salary) FROM customer
WHERE city = ’Zurich’ and age <= 30

then qy using a deterministic ES will be something like:

SELECT salary, age FROM customer
WHERE city = EncES(’Zurich’)

Remark 2 Query Logs additionally provide a database adversary with information
about the clients submitting the queries, timestamp of the query submitted and their
frequency. An adversary that has background knowledge about the business logic can
use these additional log information to guess the original queries submitted by the
clients. In general, statistical attacks on query logs can be classified as KQA.

The advantage of a database adversary, ADB, to succeed in a Known-Query Attack,
is defined as his probability to distinguish the rewrite of two queries with the same
structure as shown in the Experiment 5.

AdvIND-KQA
ES (ADB) = Pr[ExpIND-KQA

ES (ADB) = 1]

The experiments ExpIND-KQA
ES (ADB) is defined as follows:

10 Tahmineh Sanamrad and Donald Kossmann

Experiment 5 : ExpIND-KQA
ES (ADB)

QS
x

$← Qx

QS
y ← QRF (ES, QS

x)

(q1x, q
2
x)

$← Qx s.t. q
1
x, q

2
x /∈ QS

x

b
$← {0, 1}

qby ← QRF (ES, qbx)
b′

$← A(QS
x , Q

S
y , (q

1
x, q

2
x), q

b
y)

if b′ = b then return 1
else return 0

Lemma 2 Given an encryption scheme ES and a set of original and rewritten query
pairs, (QS

x ,QS
y), ES is at least as safe4 against Known-Query Attack as ES is safe

against Known-Plaintext Attack.
AdvIND-KQA

ES (ADB) ≤ AdvIND-KPA
ES (A)

Proof. Let ES be an arbitrary encryption scheme. Suppose ADB is an adversary with
non-trivial IND-KQA advantage against ES . We construct an IND-KPA adversary, A,
against ES . As per definition in the IND-KPA experiment (Experiment 2), A is given
a set of plaintext-ciphertext pairs. A has also access to a limited QRF that only works
for QS

x . A first runs QGen(x) = QS
x and then QRF (ES, QS

x) = QS
y . Additionally,

A receives x1, x2 and yb, so he constructs q1x = QGen(x1), q2x = QGen(x2) and
qby = QSim(yb). Eventually, A runs ADB(QS

x , Q
S
y , (q

1
x, q

2
x), q

b
y). A’s communication

with ADB mimics the IND-KQA experiment. Clearly, A is efficient since QGen, QRF
and QSim are linear to the size of their input.

Indistinguishability against Known-Plaintext Attack (Section 2) can be reduced to
indistinguishability against Known-Query Attack as Lemma 2 shows.

4.3 Chosen-Query Attack

Chosen-Query Attack (abbreviated as CQA) is when the database adversary, ADB, has
access to a Query Rewrite Function, QRF (ES). For example, an adversary that can
send arbitrary queries to the encryption layer and see the rewritten queries on the other
end. The advantage of a database adversary, ACQA =

(
ACQ, ADB

)
, to succeed in a

Chosen-Query Attack, is defined as his probability to distinguish the rewrite of his cho-
sen queries as shown in Experiment 6.

AdvIND-CQA
ES (ACQA) = Pr[ExpIND-CQA

ES (ACQA) = 1]

The indistinguishability against Chosen-Plaintext Attack (see Section 2) can be re-
duced to indistinguishability against Chosen-Query Attack as Lemma 3 suggests.

4 Safe means indistinguishable in this experiment.

Query Log Attack on Encrypted Databases 11

Experiment 6 : ExpIND-CQA
ES (ACQA)

QS
x

$← ACQ(Qx)
QS

y ← QRF (ES, QS
x)

(q1x, q
2
x)←ACQ(Qx) s.t. q

1
x, q

2
x /∈ QS

x

b
$← {0, 1}

qby ← QRF (ES, qbx)
b′

$← A(QS
x , Q

S
y , (q

1
x, q

2
x), q

b
y)

if b′ = b then return 1
else return 0

Lemma 3 Given an encryption scheme ES and a set of original and rewritten query
pairs, (QS

x ,QS
y) where QS

x has been chosen by the adversary, ES is at least as safe
against a Chosen-Query Attack as ES is safe against a Chosen-Plaintext Attack.

AdvIND-CQA
ES (ACQA) ≤ AdvIND-CPA

ES (A)

Proof. Let ES be an arbitrary encryption scheme. Suppose ACQA is an adversary with
non-trivial IND-CQA advantage against ES . We construct a CPA adversary A against
ES . As per definition in the IND-CPA experiment (Experiment 3), A is given a set of
plaintext-ciphertext pairs where plaintexts have been chosen by the attacker. A has also
access to a full-fledged QRF. A first runs QGen(x) = QS

x and then QRF (ES, QS
x) =

QS
y . Additionally, A receives x1, x2 and yb, so he constructs q1x = QGen(x1), q2x =

QGen(x2) with the same structure and qby = QSim(yb).
Eventually, A runs ADB(QS

x , Q
S
y , (q

1
x, q

2
x), q

b
y). A’s communication with ACQA mimics

the IND-CQA experiment. Clearly,A is efficient since QGen, QRF and QSim are linear
to the size of their input.

5 Conclusion

In this paper we have shown why it is important to consider additional and enhanced
adversary models when analyzing the security of an encrypted database. The reason is
because an encrypted database does not only consist of data but also queries and there-
fore, the security of the query logs are as important as the security of the data. Along
the way, we have introduced a few notions and tools such as a Query Rewrite Function,
a Query Generator and a Query Simulator to be used in our query-enhanced adversary
models. In the end, we proved by reduction that breaking a database encryption using
a query-enhanced adversary is at least as hard as breaking the underlying encryption
scheme using a normal adversary. More concretely, we could show in this paper that:

– An encrypted database is at least as secure against a Query-only Attack as its un-
derlying encryption scheme is secure against a Ciphertext-only Attack

– An encrypted database is at least as secure against a Known-Query Attack as its
underlying encryption scheme is secure against a Known-Plaintext Attack

– An encrypted database is at least as secure against a Chosen-Query Attack as its
underlying encryption scheme is secure against a Chosen-Plaintext Attack

12 Tahmineh Sanamrad and Donald Kossmann

As already mentioned in the introduction, there are a dozen of database encryption sys-
tems and schemes proposed in different communities. Nevertheless, adversary models
that capture the query log security have never been defined or proposed before. As a
venue for future work, the conclusions in this paper can be easily used to analyze the
query log security for any existing or upcoming database encryption system or scheme.

References

1. R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Order preserving encryption for numeric data.
In SIGMOD, pages 563–574, 2004.

2. A. Arasu and S. Blanas. Orthogonal security with cipherbase. In CIDR, 2013.
3. S. Bajaj and R. Sion. TrustedDB: a trusted hardware based database with privacy and data

confidentiality. In SIGMOD, pages 205–216, 2011.
4. A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill. Order-preserving symmetric encryption.

In EUROCRYPT, pages 224–241, 2009.
5. A. Boldyreva, N. Chenette, and A. O’Neill. Order-preserving encryption revisited: Improved

security analysis and alternative solutions. In CRYPTO, pages 578–595, 2011.
6. E. Damiani, S. De Capitani Vimercati, S. Jajodia, S. Paraboschi, and P. Samarati. Balancing

confidentiality and efficiency in untrusted relational DBMSs. In CCS, pages 93–102, 2003.
7. H. Hacigümüş, B. Iyer, C. Li, and S. Mehrotra. Executing SQL over encrypted data in the

database-service-provider model. In SIGMOD, pages 216–227, 2002.
8. S. Hildenbrand, D. Kossmann, T. Sanamrad, C. Binnig, F. Faerber, and J. Woehler. Query

processing on encrypted data in the cloud. Technical Report 735, Department of Computer
Science, Swiss federal Institute of Technology Zurich, 2011.

9. J. Katz and Y. Lindell. Introduction to Modern Cryptography. CRC Press, 2008.
10. R. Popa, C. Redfield, N. Zeldovich, and H. Balakrishnan. CryptDB: Protecting confidential-

ity with encrypted query processing. In SOSP, pages 85–100, 2011.
11. R. Rivest, L. Adleman, and M. Dertouzos. On data banks and privacy homomorphisms. In

Foundations of Secure Computation, pages 169–178, 1978.
12. T. Sanamrad, L. Braun, D. Kossmann, and V. Ramarathnam. POP: A new encryption scheme

for dynamic databases. Technical Report 782, Department of Computer Science, Swiss fed-
eral Institute of Technology Zurich, 2013.

13. R. Sion. Secure data outsourcing. In VLDB, pages 1431–1432, 2007.
14. S. Tu, M. Kaashoek, S. Madden, and N. Zeldovich. Processing analytical queries over en-

crypted data. In VLDB, pages 289–300, 2013.

