
Scientific Data Repositories -
Designing for a Moving Target

Etzard Stolte, Christoph von Praun, Gustavo Alonso, and Thomas Gross

Department of Computer Science
ETH Zürich

CH 8092 Zürich, Switzerland

ABSTRACT
Managing scientific data warehouses requires constant adap-
tations to cope with changes in processing algorithms, com-
puting environments, database schemas, and usage patterns.
We have faced this challenge in the RHESSI Experimental
Data Center (HEDC), a datacenter for the RHESSI NASA
spacecraft. In this paper we describe our experience in
developing HEDC and discuss in detail the design choices
made. To successfully accommodate typical adaptations en-
countered in scientific data management systems, HEDC (i)
clearly separates generic from domain specific code in all
tiers, (ii) uses a file system for the actual data in combina-
tion with a DBMS to manage the corresponding meta data,
and (iii) revolves around a middle tier designed to scale if
more browsing or processing power is required. These design
choices are valuable contributions as they address common
concerns in a wide range of scientific data management sys-
tems.

1. INTRODUCTION
Scientific databases in general and astrophysical reposito-

ries in particular have been repeatedly identified as one of
the open challenges facing the database community [13]. For
instance, in a recent panel at VLDB 2002, it was hotly de-
bated whether scientific databases should contain the actual
data or only meta data pointing to files where the data re-
sides [11]. Such repositories pose a wide range of problems.
First, some of them have already passed the petabyte line
[24, 23]. Second, and this is not often fully recognized, there
are many critical design issues that go beyond fast query pro-
cessing. Some of the most relevant are unpredictable usage
patterns, the need to incorporate external processing tools
to the data repository (SQL can select the data but it can-

This research was sponsored, in part, by the Institute of As-
tronomy and the Department of Computer Science at ETH
Zürich, and by grant TH-WI/99-2 from the VP for Research
at ETH Zürich.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2003, June 9-12, 2003, San Diego, CA.
Copyright 2003 ACM 1-58113-634-X/03/06 ...$5.00.

not process it), the need to accommodate constant change
(of the raw data, of the usage patterns, of the analysis rou-
tines, etc.), and the fact that performance and efficiency
is not measured by query response time but by the time a
scientist needs to extract information from the data. Most
existing systems nowadays tend to ignore these issues. In
astrophysics, for instance, many data centers provide pri-
marily data access via FTP. Advanced searches are done by
downloading raw data and filtering the data using ad hoc
scripts [13].

In this paper we describe our experience addressing these
and other limitations of scientific repositories as part of
the design and implementation of the RHESSI Experimen-
tal Data Center (HEDC)1 [17]. HEDC is a scientific data
warehouse that manages the high-energy solar observations
generated by the NASA’s Reuven Ramaty High Energy So-
lar Spectroscopic Imager (RHESSI)2 satellite. The design
philosophy behind HEDC has been that a successful data
management environment should provide seamless access to
arbitrary subsets and combinations of both local and remote
data, as well as being compatible with the rich set of existing
data analysis environments. These analysis environments
need to be an intrinsic part of the system to allow users to
both access the data and process it to obtain information.

In what follows we describe how these requirements have
been met in HEDC. Although we use HEDC as motivation
and context for the implementation, the techniques we dis-
cuss are not particular to solar astrophysics data. They can
be used in a wide range of scientific applications and, hence,
are an important contribution towards more efficient han-
dling of scientific data. Some of these techniques include:

• Clear separation between data (raw and derived data)
and meta data. The meta data is managed using a
database. The data resides in file archives. There is
also a clear separation between database schemas for
meta data and actual data. This arrangement allows
the system to accommodate constant change to the
data without affecting the rest of the system.

• Extensive support for meta data management and data
processing. For searching the meta data, users can
use either visual tools to graphically render the search
space, predefined queries, or their own SQL queries.
For working with the data, users can use the standard

1http://www.hedc.ethz.ch
2http://hesperia.gsfc.nasa.gov/hessi/

analysis routines provided with the RHESSI data or
download the data and use their own routines. New
analysis results thus produced may be uploaded and
imported into the system.

• A comprehensive set of user interfaces to support the
spectrum from the casual, non-specialist user (who can
access the system through a Web page) to advanced
users (who can create a local mirror copy of the entire
HEDC server, including data and functionality).

• Support for approximated search, analysis, and visu-
alization of both large data volumes and individual
events. This turns HEDC into an interactive tool that
significantly increases the capacity of scientists to ex-
plore and analyze data.

• A flexible architecture that can be adapted to multiple
scenarios. In HEDC, where the current user commu-
nity is small, we use a single server for the core of
the system and a number of workstations and PCs for
data processing. However, the entire architecture can
be transparently extended to a cluster-based system
with multiple Web servers, processing servers, and a
distributed database.

In what follows, we describe the background for the project
in more detail (Section 2). In Section 3 we discuss the re-
quirements imposed on the system. Then we present the
design tier by tier (Sections 4 – 6). In Sections 7 and 8 we
empirically validate some of the ideas discussed. We con-
clude the paper after discussing related (Section 9).

2. PROJECT BACKGROUND

2.1 NASA’s RHESSI
RHESSI was launched on February 5, 2002. Its primary

scientific objective is to understand particle acceleration and
explosive energy release in the magnetized plasma at the
Sun. RHESSI combines an imaging system consisting of 9
rotating modulation collimators (each made up of a front
and a rear segment), each with a high-spectral resolution
germanium detector (GeD) covering energies from soft X-
rays (3 keV) to high-energy gamma-rays (20 MeV). RHESSI’s
hard X-ray imaging spectroscopy provides spectral resolu-
tion of 1 keV, spatial resolution down to 2 arcsec, and
temporal resolution as short as tens of milliseconds.

Since launch, RHESSI has been generating 2.0 GB of raw
data per day. The data produced is buffered and forwarded
to a ground station at pre-established intervals. This raw
data stream is analyzed for possibly relevant events, seg-
mented along the time axis, packaged into units of roughly
40 MB, formatted as Flexible Image Transport System (FITS)
files3 and compressed using gnu-zip. If relevant events are
detected, some summary data and a number of derived data
products (mostly images) are generated which are then at-
tached to the raw data unit. This standard catalog of events
is meant as a starting point for analysis. Within about 24
hours, the raw data is sent to HEDC and two other reposito-
ries at the Space Science Lab (UC Berkeley) and at NASA’s
Goddard Space and Flight Center (GSFC).

3http://fits.gsfc.nasa.gov/

A basic software package is provided together with the
data (the Solar Software Tree, SSW4) to allow scientists to
process the data. These routines are written in IDL (In-
teractive Data Language5), a proprietary interpreted lan-
guage and run-time environment commonly used in solar
astrophysics. Most scientists working on RHESSI data are
expected to develop their own algorithms using this basic
package.

2.2 HEDC
HEDC has been built to optimize the scientific return of

the RHESSI mission. Its main goals are to facilitate ac-
cess to the data, to support data processing and imaging,
and to serve as a platform for sharing scientific results. A
system like HEDC is needed in addition to the significant
efforts associated with RHESSI spacecraft since the astro-
physical data is typically prepared with a view towards opti-
mizing ease of production, storage and delivery rather than
the processing of the data. The main concern in HEDC is
therefore to speed up the process whereby scientists extract
useful information from the data delivered by the satellite.
As a result, most of HEDC’s functionality is geared towards
the efficient creation, management and utilization of derived
data or data products rather than the management of the
raw data produced by the spacecraft. When the raw data
units reach HEDC, they are once more searched for inter-
esting events, using programs that detect a wider range of
events such as solar flares, gamma ray bursts, or quiet peri-
ods. Whenever these programs locate a potential event, sev-
eral dozen analysis algorithms process the associated data.
The analysis algorithms most frequently used in HEDC are
imaging, lightcurves and spectroscopy, all of which generate
pictoral content. Together with extensive meta data (algo-
rithm parameters, log files) these pictures are cataloged and
stored in HEDC to become part of the extended catalog.

HEDC has been in development since 1998. It is on-
line since May 2000, when it started to manage data from
ground-based observatories. With the launch of RHESSI,
HEDC became available to solar astrophysicists, professional
astronomers, and the interested public worldwide. Towards
the end of the planned RHESSI mission (two years), the raw
data volume will rise to a minimum of 1.5 TB. It is expected,
nevertheless, that RHESSI will remain operational for three
additional years. In this case, about 5 TB of raw data are
produced during the spacecraft’s life. The pre-processed ver-
sion of this raw data will amount to several hundred GB.
The extended catalog and data products generated by users
will amount to an additional 3 TB. Currently, more than
320 GB of calibrated RHESSI data containing 174000 cata-
log entries and around 25 GB of measurements taken by the
Phoenix-2 Broadband Spectrometer in Bleien, Switzerland
are available at HEDC. The Phoenix catalog contains spec-
trograms for around 3000 identified solar events and is part
of the extended catalog.

2.3 HEDC Architecture
HEDC follows a 3-tier architecture (Figure 1) to provide

as much flexibility as possible in terms of scalability (most
scientific repositories use a 2-tier approach [5]). The core
of HEDC currently runs on a SUN Enterprise Server with 2
GB RAM, dual 450 MHz processors, a SUN A1000 1.0 TB

4http://www.lmsal.com/solarsoft/index old.html
5http://www.rsinc.com/idl/

RAID and 2.5 TB of additional hard-disk drives (storage
space will grow with time).

The resource management layer includes the data stor-
age and the external processing units in charge of executing
analysis and imaging algorithms. The processing units are
IDL servers (version 5.4) running on the SUN server. The
system supports running additional IDL servers on nodes
other than the server, a feature that has been tested but
not yet used in practice. Data storage includes a database
and a number of storage devices. For the database we use
Oracle 8.1.7 Enterprise Edition. Critical data, such as the
database redo logs and configuration information, is stored
on the A1000 with tape backup. Secondarily generated data
is stored on no-backup RAID5. Raw data files are stored on
hard-disks with no back-up and are archived on CDs. Re-
mote archives are linked by NFS. A tape archive connected
to the conventional backup facilities is also used for storing
data files that are not needed on-line.

The application logic tier includes two components that
communicate through RMI and HTTP. The Data Manage-
ment component (DM) controls and optimizes access to the
data. It hides specific details like file formats and the specific
data type required by analysis programs behind interfaces.
Thus high level DM functions are generic and do not require
adaptations if, e.g., the underlying file format changes. The
Processing Logic component (PL) manages the IDL anal-
ysis servers, which run the SSW routines and provide the
standard RHESSI analysis algorithms. It also coordinates
necessary data transformations as the IDL server provide
only rudimentary job control, data management, and error
recovery functionality. Both the DM and PL are imple-
mented in Java (Java 1.3/1.4) and run either as stand-alone
programs or as servlets in the Web server (Apache 2.0.39
and Tomcat 4.0.4). For performance reasons some database
specific code was implemented using PL/SQL and C++.

At the presentation layer, HEDC can be accessed through
either a Web based client using a conventional browser6 or a
Java-based client, the StreamCorder7. The former is a thin
client solution for users who are only interested in browsing
existing data or have the necessary access rights to perform
data processing at the server. The latter is a fat client so-
lution that we use to optimize client side processing and to
cache data on the client side.

3. DESIGN CONSTRAINTS

3.1 Dealing with Change
A data repository that is used for any length of time must

face obvious changes as part of the usual evolution of com-
puting environments (in our case new versions of Java and
the DBMS; new operating system releases and data encod-
ing libraries; etc.). A scientific data repository must be pre-
pared for a wide range of additional changes. For example,
the actual raw data may change, the analysis routines will
certainly evolve during the entire life time of the system,
and the usage patterns of the system will change as users
evolve the focus of their research. At HEDC we already
had to accommodate new raw data formats and new data
sources (different RHESSI instruments and other sensors all
together), some of which require a new database schema.

6http://hercules.ethz.ch:8081/hedc/index.html
7http://www.hedc.ethz.ch/release/

Another important requirement is version control. A typ-
ical assumption about the raw data stored in a scientific
repository is that it does not change beyond perhaps a few
corrections here and there. Yet with RHESSI, as in many
similar instruments, it is to be expected that the raw data
will be recalibrated several times. Accordingly, the raw data
and all the derived data based on it must be versioned. In
addition, data and analysis algorithms need support for lin-
eage tracking. Depending on user requests and capacity, a
significant number of the analyses performed for previous
versions of the data may have to be recomputed.

Systems that limit themselves to SQL queries as the basis
for data search and processing do not face the problem that
the analysis routines used will constantly change. Some may
change as a result of data recalibration, others will change
simply because designers optimize existing routines, many
more will appear as scientists gain experience with the data
and devise new ways to extract information from it. It was
this form of constant change, experienced since we started
to design the system, that led to the inclusion of the PL
component as part of the architecture. The PL abstracts
the analysis routines and permits changes to them without
affecting the rest of the system.

HEDC is capable of dealing with change thanks to a num-
ber of programming and user interfaces that abstract from
the domain specific data model and processing aspects. Some
of these interfaces are most obvious in the organization of
the database schema and the implementation of the appli-
cation logic. The database schema has been divided into
two parts: one related to the management of meta data and
another with the actual data model for RHESSI. The two
parts are independent of each other and it is straightforward
to change the RHESSI specific part of the schema. Similar-
ily, the DM abstracts from the actual database schema and
the intricacies of optimized SQL, while the PL encapsulates
IDL and the SSW routines. Thus the application logic pro-
vides clean and generic interfaces that allow changing the
underlying infrastructure without affecting the rest of the
system. With these solutions, we minimize downtime and
the number of places that must be adapted over time, while
at the same time maximizing the autonomy of the various
system components with respect to each other. Since it is
operational, HEDC has successfully undergone several recal-
ibrations, accommodated changes in the format of the raw
data, introduced new forms of data processing (e.g., produc-
ing video animation rather than just still images), and ex-
tended its support for other applications (mainly non-solar
events).

3.2 Dealing With the Unexpected
The biggest challenge when building a scientific data repos-

itory is that, more often than not, it is not entirely clear how
the data will be used. RHESSI data is but one example of
this. RHESSI is primarily intended for solar observation.
One could, therefore, construct a very successful (and much
more efficient) system by focusing on a single use of the data:
the study of solar flares. By doing this, it is possible to re-
duce the amount of data in the system significantly (e.g.,
dropping all periods when the satellite does not observe the
sun, quiet periods, or transits through the South Atlantic
Anomaly). It is also possible to optimize querying, process-
ing, and data representations by considering only flare data.

The problem with this approach is that such a system has

Processing Logic (PL) Data Management (DM)

 Server
Manager

Directory
 Services

ProcessesServices

...

TMP
Storage
Space

IDL
Server

TMP
Storage
Space

TMP
Storage
Space

IDL
Server

...

Network File System

DB
Space

DB
Space

DBMS 1
(Oracle)

DBMS 2
(Oracle)

Less
Relevant

Data

I/O
Adapter

(HTTP, RMI)

(HTTP)

Thin Client - Web Browser

(HTTP)

HEDC
(Web server)

Apache
Local
DBMS

Images
And

Raw Data

Database Tape Archive

StreamCorder - Java Client

R
E

S
O

U
R

C
E

 M
A

N
A

G
E

M
E

N
T

A
P

P
L

IC
A

T
IO

N
 L

O
G

IC
P

R
E

S
E

N
T

A
T

IO
N

 T
IE

R

Front
End

Analysis
Application

Figure 1: 3-Tier system architecture of HEDC.

the potential of significantly reducing the scientific return of
the mission. RHESSI is also a good example of what could
be lost. Given the characteristics of the detectors, some of
the measurements taken by RHESSI can be used in research
related to gamma ray bursts (which are non solar events).
In a “solar flare only” system, such research would be im-
possible and would require direct manipulation of the raw
data completely outside the data repository. As pointed out
by Gray and Szalay [13], if posing a question in a scientific
data repository is difficult and takes time to get an answer,
the result is that fewer questions are posed. If a system
does not allow at all to pose certain questions, then it limits
outright the potential outcome of the data gathering effort.

With HEDC we have tried very hard to provide a com-
pletely open system, that is, one in which no question is
ruled out from the beginning. This has direct and signifi-
cant implications on the architecture of the system. First,
we cannot solely rely on querying as the way to find rele-
vant data. Second, the time to respond to a query has only
a minimal influence in the overall response time observed by
a scientist.

3.3 Processing Instead of Querying
SQL is a more efficient way to find out relevant informa-

tion than ad hoc methods such as scripts that comb through
the data files [13]. Unfortunately, this holds only for those
cases in which the information the scientist is looking for is
properly represented in the database schema. A “solar flare
only” repository cannot answer questions about gamma ray
bursts and vice versa. The problem is that it is hopeless to
attempt to create a super-schema that contemplates all pos-
sible uses of the data. This is especially true in repositories
that contain continuous observations.

As a result, a scientific data repository that needs to sup-
port unexpected analyses needs to use a very flexible data
organization, one that does not cast in stone what scientists
can and cannot do with the data. Note that the problem is
not one of schema evolution. Users of the system may (and
will) come up with their own way of processing the data.

They will use generic tools, if available, for coarse searches,
but afterwards they will perform their own analysis. Such a
variety of data views cannot be efficiently supported by any
scientific data repository.

The solution we propose as part of HEDC involves two
steps, one related to data organization, the other to data
processing. In terms of data organization, HEDC does not
provide predefined “types” for the data (e.g., solar flare,
quiet period, etc). In HEDC there are only events. An
event is an observation period that has some meaning to a
particular user. The notion of event allows users to build
their own catalogs of relevant data using any information
available in the raw data. By maintaining a basic and an
extended catalog, HEDC provides lists of events that are
generally accepted as being of a particular type. These lists
are generated when the data is loaded. In terms of data
processing, HEDC incorporates external programs as part
of its repertoire of operations. There is also the possibility
for users to submit analysis routines that can be included
into the system and made available to other users.

3.4 A Meaningful Notion of Response Time
An interesting requirement imposed on HEDC is that it

should significantly reduce the time to obtain meaningful
results from the available data. RHESSI data, like in many
similar repositories, is at a very low level. Simply stated, it
is a list of photon impacts on the detectors, with an energy
and a time tag attached to each record. A long chain of
processing steps that, in most cases, cannot be automated is
taken before a scientist can decide that some records contain
meaningful data. This chain typically involves identifying an
observation period, producing a particular image for that
time period and a given energy range, and deciding whether
the data is relevant. The catch is that the analysis and
imaging routines can be used in many different ways and
with many different parameters. Before a sensible decision
can be made, dozens of analyses might be necessary. Thus
the amount of data a scientist can explore depends on the
overall time it takes until the analysis results may be viewed.

This notion of response time is important because it in-
cludes processing time beyond the time it takes the sys-
tem to retrieve the data necessary for the analysis. This is
not a database design problem but an overall system design
problem, since the time span to get to the data is signifi-
cantly shorter than the time needed for actual processing. In
HEDC we have implemented a novel solution that shortens
this holistic response time by at least an order of magnitude
(in fact, allowing interactive work with the system which
would otherwise be impossible). The approach is based on
using approximated data for analysis and visualization and
it involves preprocessing the data when it is loaded into the
system to construct wavelet compressed range partitioned
views over the raw data.

3.5 Avoiding Redundant Work
HEDC is primarily a platform to facilitate the collabo-

ration among scientists. Users can log on into the system
to browse and down load data, apply transformations to
the data and have the results stored in HEDC. When the
user decides, these results are made available to other users
as part of the HEDC data collection. This facility is cur-
rently being used to disseminate the results of particularly
relevant analyses. Since these analyses are already precom-
puted, users do not need to repeat the analyses themselves,
thereby reducing the system load and speeding up the search
for relevant data. When a user requests to analyze a given
data set, HEDC can check whether this has already been
done and, if that is the case, offer the available results as an
alternative.

4. DATA MANAGEMENT

4.1 Data Organization
From a system’s perspective the data is organized into

two categories: meta data and data. By data, which resides
in a file system, we refer to the raw data and most derived
data products (mainly images). By meta data, stored in a
database, we refer to the data that describes, classifies, and
summarizes the actual data. The meta data also includes
information necessary to manage and control the system.
Within HEDC, the data in the file system is only accessible
through the meta data available in the database. In this way
we can maintain referential integrity and implement proper
backup/recovery procedures for the file system.

All file data is read only. Raw data is introduced in the
system by uploading routines and stored as FITS files. Some
parts of the raw data are wavelet encoded for later use dur-
ing progressive processing and visualization. The images
of the basic and extended catalogs are also stored as files
when new RHESSI data is uploaded into the system. Ad-
ditional derived data is produced either by users directly,
by automatic search routines that comb the raw data as a
background process, or by users who upload derived data
produced with the StreamCorder.

Importing an analysis involves (i) storing and referencing
multiple files (algorithm parameters, process log, resulting
images, and sometimes the actual algorithm) and (ii) creat-
ing multiple meta data tuples. From the user’s point of view,
this meta data is organized into results of analyses (ANA),
high level events (HLE), and catalogs. A HLE roughly cor-
responds to a period of time and range of energy that has
been determined to be relevant by a specific user. For each

HLE, there can be many analyses performed. HLE tuples
are not only generated during data loading, but also auto-
matically created during local and remote data processing.
HLEs can be grouped into catalogs. We use the notion of
catalog to implement private user workspaces and to group
HLEs according to different criteria (solar flares, gamma
ray bursts, flares of certain characteristics, etc.). Examples
are the standard and the extended catalog, which are main-
tained for the benefit of HEDC users as reference points to
start their own exploration.

Each HLE and ANA is represented in HEDC by a tuple.
These tuples contain enough information to describe events
as well as analyses (around 25 and 45 attributes each). They
also contain a reference to the files associated with that event
or with that analysis. The meta data needed to manage
external these file references is stable over time, whereas the
meta data describing analyses and HLEs changes as new
analysis algorithms are developed. The database schema is
therefore divided into two parts, a generic and a domain
specific (RHESSI related) part.

The generic part contains three sections. The adminis-
trative section (three tables) includes all configuration pa-
rameters necessary for setting up and using the repository:
schema description (used to track the lineage of attributes);
available services (type, location, prerequisites); connected
clients (type, IP, status); predefined queries and reports;
current database instances and data partitions; data refresh
and purging rules; user and user group profiles (access rights,
sessions, status); etc. The operational section (four tables)
includes data collected during the operation of the reposi-
tory: logs and messages; lineage of migrated or transformed
data; status of archives (online, capacity left, type); mon-
itoring information such as usage statistics or audit trails.
The location section (four tables) stores external file refer-
ences. These tables keep track of the physical location of
a file (file path) and provide the information used to access
the file directly (e.g., download URL) or after some trans-
formation (e.g., download of a compressed file). Subsection
4.3 explains this name mapping in detail.

The domain specific part (seven tables) contains the anal-
ysis, HLE and catalog data. All tables contain references (i)
to the location tables, so that files may be associated with
any of the tuples, and (ii) to the user table (administration
section), so that access rights are enforceable.

4.2 LOBs versus File System
An alternative solution to the one followed in HEDC is

to use the “Large Object” (LOB) data type supported by
many commercial databases. After extensive testing, we de-
cided against this option for several reasons. First, accessing
a LOB is significantly slower than accessing a file. For the
LOBs to be manageable, they must be reasonably small.
But then requests for, e.g., a long range spectrogram, would
have incurred unacceptable delays while retrieving the nec-
essary raw data (which, on top of that, needs to be pro-
cessed to produce an image). Second, existing implementa-
tions of LOBs tend to lack support for the hierarchical stor-
age management systems needed to provide vendor indepen-
dent, scalable, and robust data access, migration and backup
across different file systems and platforms, all of them key
features in any realistic data repository.

Another alternative would be to use a file system exten-

sion of a DBMS (e.g., DB2 DataLinks8). The problem is
that the processing done at HEDC is external. Any form of
analysis would require extracting the data through an SQL
interface, merging it outside the database, passing it on to
the IDL servers and putting the result back into the system
through the SQL interface. With our approach, we skip
most of these steps so that components and clients simply
copy files to the appropriate location.

4.3 Name Mapping
HEDC uses a dynamic mapping scheme to locate and re-

trieve data items. Information is located by constructing a
name that refers to the data. This is done through the lo-
cation tables. Each name has the form: [type] [root] [path]
[item id], each one of these elements being determined dy-
namically for every request. There are three types of names:
filenames, tuple identifiers, and URLs. Filenames describe
the local storage location. Tuple identifiers are used to
locate tuples (independent from DBMS location or type).
URLs are used to download data.

For any tuple in the specific part of the schema (be it an
HLE, a catalog, or an ANA), a particular field contains an
item identifier ([item id]). The [root] information is obtained
from the system configuration files. Querying the location
tables with the item identifier returns a number of entries
associated with that data tuple. From each entry, the system
extracts the name type ([type]) and the archive id. The
archive id is used to retrieve the current archive type and
[path]. By combining all these elements, the system can
therefore obtain the location of the files associated with a
given tuple. The same applies for tuple identifiers and URLs.

The cost of this dynamic name construction is two extra
database queries on an indexed field. The advantages of the
approach are many. On one hand, the name construction
process amounts to using dynamic binding. This setup pro-
vides a great deal of flexibility in managing the file system
and allows system administrators to change the location of
files arbitrarily without having to modify all tuples in the
specific part of the schema (it is enough to modify the lo-
cation tables). In addition, it can all be done at run time
without having to halt the system. System administrators
can install or repair disks, reorganize the data, or move data
from disk to tapes by simply changing tuples in the location
table.

4.4 Consistency
An obvious problem when dividing the system into a data-

base and a file system is how to maintain consistency be-
tween the two. In our experience, the problem is signifi-
cantly simplified by the fact that it is generally possible to
run the system on dedicated servers with restricted access.
This prevents users or applications from making changes in
one part of the system (e.g., deleting a file) without updating
the other part (e.g., removing the corresponding tuples).

In HEDC we ensure consistency through the data man-
agement part of the application logic layer (see next section).
The DM access control component filters unwanted calls and
offers transactional properties around entities (such as an
HLE and its related analysis tuples) and their references to
data files during data loading, updates, and migration. It
also acts as a coordinator for external programs called dur-
ing data staging, backup/restore and data processing.

8http://www-3.ibm.com/software/data/db2/datalinks/

5. APPLICATION MANAGEMENT
A key feature in HEDC is the integration of data manage-

ment with external data analysis tools. The goal is to create
the illusion of a seamless dataspace that scientists may ma-
nipulate with their favorite tools [10]. The role of the middle
tier in HEDC is to incorporate external processing and data
management tools so that changes in these environments re-
quire only localized adaptations in the middleware and are
transparent to the user.

5.1 Structure of the PL Component
The goal of the processing logic (PL) is to hide external

processing environments behind an interface that the rest of
the system can use to request external processing. The PL
component is organized around a software framework that
implements the following services:

• Frontend: Primary controller of sessions and requests,
dispatch and scheduling of requests to processing sub-
systems. There is one instance of this service.

• IDL server manager: Multiple native IDL interpreters
are managed (start, stop, restart). It provides the pos-
sibility to invoke IDL routines synchronously and asyn-
chronously and implements error handling (timeout,
resource drain). Every processing client executes one
instance of this service.

• Global directory: Provides a directory of all services
related to the processing logic. There is one instance
of this service.

Interactions between these services are self-recovering and
tolerate failure and restart. IDL server managers can be
dynamically added and removed as needed without halting
the system.

To maintain generality, the PL does not incorporate spe-
cific information about a processing environment into the
interface of a service and the foundation classes of the soft-
ware framework that the services are built upon. Such in-
formation is exchanged in dynamic structures, their inter-
pretation being delegated to framework extensions, mostly
strategy classes [12]. As before, this represents a layer of
indirection that could potentially slow down the system but
provides much needed flexibility to incorporate a variety of
processing environments.

The PL accepts requests through various interfaces, e.g.,
the command line, HTTP, or RMI. Regardless of the inter-
face, an analysis follows an abstract model that describes
the workflow of an individual request along 4 phases:

• Estimation: This is an optional phase that determines
the feasibility and availability of resources for a re-
quest. We use a simple predictor to inform the user
about the duration of the subsequent execution phase.
The result of this phase is an execution plan. This
phase returns immediately.

• Execution: Carries out the actual processing. This
phase can be executed synchronously or asynchronously.

• Delivery: Results are made available.

• Commit: Results are written back into HEDC (through
the DM component).

Phases must be executed in order, and not all phases are
mandatory. Requests can be canceled at any time and in-
duce the cleanup for the current phase.

Specific request types feature analyses that are imple-
mented as a set of strategies, i.e., one for each phase. The
strategy concept supports our demand for flexibility, and the
common structure of requests simplifies the implementation
of the front end. Incorporating new processing environments
into HEDC involves defining the strategy that extends the
existing framework as needed. In this model, the front end
takes the role of an interpreter of abstract requests, and the
execution of requests (execution and subsequent phases) is
launched according to a priority scheduling.

5.2 Structure of the DM Component
The DM has a layered architecture with two internal inter-

faces, both of which are also public to client programs. The
purpose of this architecture is mainly to improve the adapt-
ability of the system to the constant changes in all aspects
of data management and processing, while at the same time
offering client programs a stable API to operations, services
and processes.

The I/O layer abstracts from the actual storage type and
location. All data accesses happen through this layer. It
manages database access, file system manipulation, database
connections and performs general resource management. Op-
erations like dynamic name construction are also done at
this layer. Adapters encapsulate the formats of the vari-
ous storage types. The database adapter, e.g., translates
incoming data requests into proper SQL queries. The layer
supports dynamic partitioning of the load so that, e.g., data
requests for certain parts of a database schema are routed to
a different DBMS. We use this feature to separate processing
from browsing clients.

The intermediate semantic layer is used to implement ser-
vices and interact with the Application Integration compo-
nent. It enforces access rules, ensures referential consistency,
and determines data dependencies. For instance, for a given
analysis request, reading and writing files in a FITS format
is implemented by the I/O layer. The semantic layer, how-
ever, is in charge of determining which type of processing is
performed and how the results of the analysis are grouped
together. This layer ensures that all images produced during
an analysis are properly referenced in the system. The se-
mantic layer also implements services such as data insertion
and deletion. The analysis service is called, e.g., to initiate
a spectrogram analysis for a given set of raw data files, or to
call the algorithm that extracts meta data from an RHESSI
file.

The process layer combines the operations of the I/O layer
with the services of the semantic layer to provide processes.
One such process defines, e.g., the workflow during physical
archive relocation. First, tuples referenced or referencing an
entity are queried and altered, then the corresponding files
are copied, compensating actions are taken if failures occur,
and finally logs are generated. Other processes implement
raw data preparation, event filtering, entity association, and
catalog generation.

5.3 Sessions and Constraints
Each request to the DM contains user authentication to

retrieve the associated user profile (user rights, configura-
tion, constraints), identify the use, and build a temporary

view (to speed up subsequent data access). Profile, status
information and view are stored in sessions.

Depending on user authentication, user rights and sys-
tem setup, processes might also apply constraints. Privacy
constraints guarantee that only public data may be read
or processed by other users. Access constraints may enable
DBMS queries but disable edits for specific data and specific
user groups. Integrity constraints ensure that the applica-
tion specific rules are followed, e.g., referential integrity, so
that tuples belonging to an entity may not be deleted if data
dependencies exist.

Creating database connections and user sessions are the
two most expensive parts of request processing. To improve
performance, we have implemented pools for both in the
DM. The database connection pool is split into separate
pools for query processing, updates, and user authentica-
tion. Connections are immediately released by sessions after
the result set has been copied. The DM caches up to three
sessions per user (one for analysis, HLEs, and catalogues
each). The cache lookup algorithm uses the network IP and
cookies to match clients with their sessions.

5.4 DM Call Redirection
The system has been designed to run either on a single

node, or distributed across a cluster. In the same way that
the I/O layer of the DM component supports data parti-
tion, there is the possibility of redirecting calls from one
DM component to another. We use this feature to increase
capacity in HEDC by adding more nodes to the system (see
the experiments).

The DM API is accessible locally through direct instantia-
tion and pool managers. Local configuration files determine
if calls execute locally or remote. In general, the calling
methods do not know where the code is actually executed,
but can use overwrites to, e.g., force local execution. Fur-
thermore, a DM might decide to place a request in an exe-
cution queue, send the request to a pool of worker threads
for asynchronous execution or execute the call directly.

The DM API has no provisions for regular SQL calls. It
uses Java collection objects instead. During query process-
ing these objects are parsed, analyzed, verified and trans-
formed into regular SQL queries suitable for the target data-
base and schema. As a result, queries may be adapted and
optimized without system downtime. Furthermore, no adap-
tations to the API are needed to accommodate configuration
changes, such as newly materialized views or changed tables.

5.5 Access Control
By default all derived data belongs to the user who creates

it and is considered private. Only the owner may change or
delete private data. For data to be visible to other users,
the owner must flag that data as public. HEDC’s catalogs,
e.g., contain tuples created by an import user, and are later
made public. All tuples in the specific part of the database
contain the key of the tuple owner. The system typically
appends the user id to all queries so that only public tuples
or tuples owned by that user are returned.

HEDC requires an account to access its more advanced
features. Non authorized users may only browse public data.
Depending on their user profile, authorized users may in
addition download, analyse and upload data. Every sys-
tem component (such as Web server servlets or the PL)
must identify itself to the DM, which also must send a valid

Figure 2: The Web interface supports browsing of catalogs (left), HLEs and analyses (right).

user/password combination to every database it connects to.
As DM and database accounts are not related and use dif-
ferent access methods, users have no possibility to connect
directly to the database.

6. WORKING WITH HEDC

6.1 Web Interface
The basic interface to HEDC is through a Web browser.

The pages needed for this purpose are generated by the DM
component. Note that a response may involve a combina-
tion of multiple HTML template files, which are populated
during query processing. Each template contains dynamic
and static images, Java Script, CSS style sheets and plain
text. A request to display an HLE, e.g., involves loading
and filling in HLE header/footer templates and an analysis
template for each ANA tuple associated with that HLE. For
such a request, the DM issues on average seven database
queries, building the response HTML page from the tuples
returned by the database.

When a request arrives, system status and user context
are considered in deciding where to execute it (if remotely,
the execution takes place using the redirection feature of the
DM component). System status includes, e.g., the current
vertical partition that determines what DBMS a query is
routed to. The user context consists out of access rules,
which determine if users are allowed to see and/or edit all
committed data (similar to a super-user) or are restricted to
their private tuples (normal user).

The Web interface supports browsing of catalogs, HLEs
and analysis through links. Thus, the user may query for
certain HLEs contained in a catalog, jump to all analysis
contained in one HLE, then query for similar analyses and
jump to display all associated HLEs. Furthermore, links are
available for data download, analysis and upload. On the
analysis pages users may enter the parameters and execute
routines on the server to produce, e.g., ligthcurves, images
and spectrograms.

6.2 StreamCorder
The StreamCorder is a fat Java client (Figure 3) offer-

ing the same functionality as the HEDC Web-interface, plus

additional features that would have been very difficult to
implement using an HTML/applet approach. The Stream-
Corder architecture is similar to the one of the HEDC. The
functionality is divided between basic services and dynam-
ically loadable modules (or cordlets). Core services include
job- and resource-management, request queues and inter-
faces to local analysis programs. To increase performance,
some libraries were implemented in C++. Modules are data-
type sensitive, in the sense that the StreamCorder offers dif-
ferent modules to the user depending on the context. The
context is determined by the data type of the view or anal-
ysis in question and kept across all modules.

The Web-based HEDC client relies on the caching built
into the Web-browser, which is limited to static HTML-page
elements, such as analysis images, that are stored in the lo-
cal file system. The StreamCorder offers two caching strate-
gies. The first version caches not only images downloaded
during browsing but all large data-objects, including data-
segments used in local processing. Cache access is accom-
plished through a local DM component, which calculates a
unique but static file system path for each data-object. As
this path is based on fixed object attributes, such as type
and creation date, the cache structure is predetermined.

The second version adds a local DBMS installation for dy-
namic object references and meta data caching. With both
a DM and a DBMS present locally, cache object-retrieval
and -placement is identical to the way the server DM han-
dles the server-side data archives during data-loading and
query-processing. As the schema used locally is the same as
the one on the server, every installation of the StreamCorder
is, in fact, a clone of the HEDC server extended with a GUI
and extra services.

6.3 Approximated Analysis and Visualization
Many queries require summary data and use aggregates.

Hence, in addition to indices, we use materialized views to
improve response time. Our goal is to minimize the response
time between the submission of a request and the presenta-
tion of the analysis results to the user (see [22, 21] for details
on these issues).

Our basic approach to make HEDC interactive is to pre-
process the raw data. The pre-processing step involves par-
titioning the data and encoding the data using wavelets.

Figure 3: The Streamcorder offers progressive
data analysis and visualization.

The wavelet transformation is done in such a way as to al-
low the data processing routines to work on a fraction of the
original data. At the client side, these coefficients are used
to reconstruct an approximated view of the original data set
and this view is fed to the analysis routines. Since the time
complexity of many important analysis routines is directly
related to the size of the input data (linear for short analy-
ses and exponential for complex ones), the time it takes to
perform such analyses is significantly improved.

Approximated materialized views are also used to allow
interactive database visualization. The basic idea is to reor-
ganize the catalogs as a number of multi-dimensional arrays
and allow users to specify ranges in any of the dimensions.
Based on these ranges the information is then presented in a
compact and efficient manner using density (number of tu-
ples per bin) and extent (location and extent of each tuple
or cluster of tuples) plots. To achieve the necessary perfor-
mance for interactive use, we also implemented several im-
portant optimizations. First, the arrays are pre-processed
and sorted according to the most relevant attributes. Then
they are partitioned across the dimensions to form the equiv-
alent of materialized views. Since the partitioned views tend
to be large, we encode them using a wavelet transformation.
Decoding takes place at the Java client side to minimize the
load at the server (otherwise interactive exploration would
require a very powerful server). To further speed up the gen-
eration of the plots, the client works on approximated and
aggregated versions of the original data. In both cases the
StreamCorder coordinates the download, caching, decoding
and analysis of the data. Users access and manipulate an
analysis or visualization result without any knowledge about
how and where the data is stored and processed.

6.4 Integration: Synoptic search
The synoptic search subsystem serves to locate synoptic

data in remote repositories. The query mechanism is con-
text dependent so that users can find information correlated
to what they are seeing in HEDC. The approach followed re-
sembles a Web-crawler. First, online requests are issued to
several remote archives in parallel. Then the results are col-
lected, grouped and displayed to the user. Currently, the
only search criterion is the observation time.

This service operates independently from other subsys-

tems of HEDC. The service is best effort (if a query to a
remote archive times out, no results are available); query re-
sults are not cached, and there is no data synchronization be-
tween HEDC and the remote archives. This light-weight ap-
proach of rendering synoptic data accessible through HEDC
has proved to be practical and robust, avoiding the issues of
consistency and data synchronization with remote archives.
In its current configuration, six popular remote archives are
searched, including the SOHO synoptic data archive[26].

7. EVALUATION: WEB BROWSING
The current version of HEDC supports a limited amount

of simultaneous Web users and is meant to run on low-
budget hardware. Nevertheless, the system is designed to
scale. The Web browsing performance depends on several
variables: server hardware and operating system, server soft-
ware, network speed, and workload. The purpose of this
evaluation is to (i) determine the number of simultaneous
Web clients sending continuous requests until the request
rate matches the capacity of the server (maximum load), (ii)
observe the system behavior once that threshold has been
passed and more clients are being added (degradation behav-
ior), and (iii) measure the increasing maximum load as more
DM components running on separate processing servers are
added (scalability). For an evaluation of the Java client see
[21].

7.1 Test Environment
Tests are performed on a development testbed consisting

of a SUN Enterprise 3000 database server (SUN OS 5.6, two
450 MHz CPUs, 512 MB RAM, 3.5 TB RAID), one to five
Web servers (RedHat 7.1, dual Pentium III 1GHz CPUs, 1
GB RAM), and up to 96 dedicated client workstations (Red-
Hat 7.1, Pentium III 1GHz CPU, 256 MB RAM). During the
tests, an increasing number of Web clients send requests to
one of the five Web servers, which in turn send requests to
the DM that generates the response pages. Database, Web
server, and client computers are connected by a switched
100 Mb/s Ethernet.

The responses are queries to an Oracle 8.1.7 Enterprise
server installation holding more than 100,000 tuples for each
queried table. All database queries are performed on in-
dexed fields. More than 32,000 images are available dur-
ing the tests. To avoid contention during test buildup, the
Web servers are configured with a large number of initial
child processes. The database connection pool sizes are large
enough to guarantee free connections throughout the tests.

7.2 Measurements
The chosen requests are representative of how users browse

the HEDC. A typical sequence of requests by a single user
first sends a query to select an HLE, then sends another
query to retrieve all its related analyses, and finally sends re-
quests for all images related to these analyses. For everyone
of these requests the Web server servlets generate a response
page. Every response page entails multiple database queries,
parsing the query results, adding a number of static images
(e.g., for browser navigation), and wrapping everything in
HTML.

During testing the clients randomly read requests from
a local list, try to establish a connection to a Web server
(which in turn passes the connection request on to the ap-
propriate servlet), send their request, read the servlet re-

sponse, render the response page, and then start all over
again. On average, a request generates seven DM queries
and requires parsing of 80 tuples. Two of these queries war-
rant a full index scan and two are count queries. The average
response size is 12 KB for the response HTML page and 35
KB for the embedded dynamic images. Static images are
downloaded only once and then cached on the client side.
We use persistent connections (as defined by HTTP 1.1) in
the experiments. The number of “Keep Alive” requests per
connection is set to unlimited on the Web server.

During each test, clients send their requests to a single
Web server. If multiple servers are used, the client requests
are spread evenly. All clients choose requests randomly from
the same list. Measured are the response time of the sys-
tem, from the moment the client issues the request until the
moment the page has been rendered. Session objects are
cached on the server side. Thus, every client must authen-
ticate itself only once (authentication requires one DBMS
query and one update).

The purpose of these experiments is to determine maxi-
mum server throughput for defined server setups. Therefore,
the individual client workload is chosen so that local bottle-
necks could not distort server performance. To minimize
swapping, the client workload is chosen to fit into RAM (to-
gether with the relevant processing routines and operating
system modules). All log information is stored on local disk
to avoid networked I/O operations. Only requests with low
HTML response page complexity are included in the tests,
so that rendering on the client is much faster than generat-
ing the dynamic requests on the Web server side. The delay
between requests is set to zero so that these experiments
represent the worst case possible (as in real life, users first
view the request response before a new request is issued).

7.3 System Throughput

0

2

4

6

8

10

12

14

16

18

16 32 48 64 80 96

Number of Clients (single server)

R
e

q
u

e
s
ts

 p
e

r
s
e

c
o

n
d

Figure 4: Browse throughput versus number of
clients (single middle tier server).

The client workloads are carefully chosen so that a small
number of clients (around 16) are sufficient to drive our sys-
tem with a single Web server at full capacity (see Figure 4).
This is due to the underlying database, which supports a
maximum throughut of around 120 HEDC request per sec-
ond. In the tests, the clients skip the visualization step.
With normal clients (involving a human who looks at the
results of the analyses) the peak performance of the system
is reached with about 60 simultaneous clients (which, given
the existing user community, is in fact larger that the typical
number of concurrent clients we expect at any one time in

HEDC). Hence, by using clients that only submit requests
without looking at the results, the experiments are a com-
prehensive stress-test of the key areas that impact browsing
performance at HEDC: the DM, DBMS, and file system.
The areas covered by these tests include (i) integration: re-
quest forwarding to DM, name mapping, archive access, in-
tra middle tier communication, DBMS queries; (ii) security:
authorization, constraints, consistency checks; (iii) sessions:
transactions (update session attributes), caching, database
connections.

0

2

4

6

8

10

12

14

16

18

20

R
e

q
u

e
s
ts

 p
e

r
s
e

c
o

n
d

Number of middle tier servers (96 clients)
1 2 3 5

Figure 5: Browse throughput versus number of
middle tier servers.

At 16 test clients, the database is running close to its
maximum performance, with roughly one complex Web re-
quest per second per client (which translates to about 100
database queries per second). If more simultaneous Web
clients are added, the overall throughput drops to around 3
requests per second at 96 clients (see Figure 4). As the num-
ber of simultaneously used database connections (and thus
the number of issued queries) also decreases, the database
is not the reason for the slowdown. Instead, the drop in
performance is caused by the increased processing load of
the application logic. To verify this hypothesis, we conduct
another experiment where the application logic is spread
across multiple computer nodes. Figure 5 shows the overall
throughput versus the number of middle tier nodes for 96
simultaneous test clients. As more nodes process the Web re-
quests arriving at the application logic, the throughput rises
from 3 requests for one node to 18 requests for five nodes.
These 18 requests result in around 120 HEDC database
queries, the peak performance of the database setup for this
type of range query.

This experiment shows that HEDC can scale to handle
more concurrent clients by simply running several copies of
the application logic in different nodes. Further scalability
can be achieved by replicating the database using standard
techniques. Or we could add another DBMS on a different
node and apply the partition facilities provided by the DM
component. Then performance would be determined by the
CPU capacity, a scalability problem that can be solved by
replicating the application logic as shown in the experiment.

8. EVALUATION: PROCESSING

8.1 Test environment
We conducted two series of tests that approximate the

application and system load that we expect for HEDC. A
2×177MHz SUN SPARC machine is used as server for data

Image Histogram
Processing on S S C S+C S S C C/Cached S+C
Concurrent analyses 1 2 1 2+1 1 2 1 1 2+1
Overall duration [s] 6027 3117 2059 1380 960 655 841 821 438
Turnover [GB/day] 0.8 1.5 2.3 3.5 4.6 6.8 5.3 5.4 10.0
Avg. sojourn time [s] 109 56 37 24 115 74 98 90 40
Avg. sys CPU server [%] 2 3 2 4 9 13 5 6 17
Avg. usr CPU server [%] 50 96 3 95 49 76 10 11 70
Avg. sys CPU client [%] - - 5 4 - - 5 6 5
Avg. user CPU client [%] - - 90 85 - - 29 30 28

Table 1: Performance of the imaging test (Legend: S=Server, C=Client).

and processing, one 400MHz Linux PC acts as a client for
processing that accesses data remotely from the server. The
HTTP bandwidth between client and server is 2 MB/s. The
input for all tests are 50 MB of raw data partitioned into
50 files. Each test consists of a series of requests, each of
which computes an analysis from an individual file. The
requests are submitted successively such that no more than
20 requests are in the system at any given time. Each test
is executed on various system configurations to study the
effects of combining or separating data management and
processing tasks. The configurations differ in the number of
analysis tasks that execute concurrently on the server and
processing client.

8.2 Imaging Tests
The first test series comprises 100 requests for images (see

Table 2). Imaging is a typical CPU-intensive analysis, the
computation of an image takes about 20 s on an input data
set of 800 KB on the processing client, and 60 s on the
server. Only a fraction of the input data is actually accessed.
The query/edit figures show the total number of interactions
with the data management subsystem during the test. Each
analysis involves 3 queries and 2 edit operations. Table 1
(left) summarizes the results.

Requests 100
Input [MB] 50 (50 files total, 2-3 per analysis)
Output [MB] 5.5 (100 GIFs)
Queries 300
Edits 200

Table 2: Characteristics of the imaging test.

8.3 Histogram Tests
The second test series comprises 150 requests for histo-

grams. This type of analysis is more I/O-intensive than
imaging. The net computation of a histogram takes about
2–3 s per 300 KB input data on the processing client and
5–7 s on the server. The characteristics of the histogram
test are summarized in Table 3.

Requests 150
Input [MB] 50 (50 files total, 1/3 per analysis)
Output [MB] 1.2 (150 GIFs)
Queries 450
Edits 300

Table 3: Characteristics of the histogram test.

Table 1 (right) summarizes the results. For this test, we
measure an additional configuration called ’client/cached’,
where input data resides already on the scratch space of

the processing client. Compared to non-cached operation,
the figures demonstrate that even for the data intensive his-
togram test, the cost of data movement are relatively small.

8.4 Integrating new Processing Environments
The duration of query and edit operations is almost con-

stant and equal in all scenarios; the net processing time (i.e.,
sojourn time - waiting time) is equal for individual requests
and increases slightly with higher CPU load.

The results indicate that the primary system load stems
from the analysis routines and the corresponding coordina-
tion; the cost of data movement and management are com-
parably low. The scenarios and applications we consider
tend to be CPU-bound. In a configuration with a central
data repository, however, I/O could become a limiting factor
with more concurrency and distribution in processing.

The overhead of the abstraction layer represented by the
application logic is generally low compared to the overall re-
source requirements of our target applications. For analyses
with computations longer than 5 s, the interaction frequency
between data management, processing logic and processing
subsystems is low; the overhead per request is negligible.
In scenarios with parallel computations of analyses shorter
than 5 s, the central scheduling in combination with the
fault tolerant protocol among the services becomes critical:
jobs are not scheduled timely to available resources (Table
1, right: the client CPU is not saturated).

The integration of new applications and proprietary sub-
systems is feasible but requires enhancements across all lay-
ers of our architecture. During the development of HEDC,
we were confronted with minor daily updates and several
major updates of the SSW software. We experienced that
our design absorbed such changes well and that updates to
the software interface could be handled more smoothly than
changes in data formats.

9. RELATED WORK
An important point to keep in mind when considering the

functionality of HEDC is that it provides access to the raw
data obtained by the observation instruments. Typically,
scientific data repositories provide access only to derived
data products (e.g., images). This makes a big difference in
terms of requirements and the challenges faced when build-
ing the system. For instance, repositories with only derived
data do not need that much flexibility in terms of processing.

With this difference in mind, there are a number of as-
trophysical data repositories available on line, such as As-
troWeb9 which currently holds data from 143 other reposi-
tories. However, the complexities due to changing formats,

9http://cdsweb.u-strasbg.fr/astroweb.html

different user expectations, and evolving software imply that
numerous existing repositories of scientific data focus on a
stable core functionality and provide access via FTP with
Perl scripts and an HTML user interface [8, 7, 14, 20]. Some
interfaces are more complex, such as [15] or Aladin [1], the
latter offering a Java applet to query multiple XML repos-
itories and to visualize, refine and superimpose images. A
small number of archives actually use a DBMS as a query
processing tool and apply database optimization techniques
[6, 9, 15, 19, 18].

Most modern sites offer browsing and download of their
raw data and (some) of their data products. Many sites
store very large amounts of raw data [23], yet in contrast
to HEDC, usually not on disk and not on line. User man-
agement, access rights, etc., tend to be managed on an ad
hoc, manual way, e.g., by email. Many sites offer access to
a mixture of related remote data, data references or data
products [1, 2, 3, 4, 7]. In contrast, HEDC not only gives
access to the raw data but also allows users to create data
products and to store analysis data products in the system.

There are also several projects for sharing scientific ex-
periments (e.g., [3, 16, 25]). Few of these projects automate
the detection of overlapping requests and it is the user’s re-
sponsibility to find out whether a particular type of search
or analysis has already been performed. A novel aspect of
HEDC is that it provides a platform to automate the steps
and that it provides users with tools for offline work.

10. CONCLUSIONS
This paper outlines the challenges and requirements en-

countered during the design and implementation of HEDC.
Our design choices will be valuable in many other scientific
repositories as they address common difficult problems that
plague such systems. The contribution of HEDC lies, there-
fore, both in the set of features and services provided to the
(application) scientist and in the specific system organiza-
tion that makes these features practical. Due to the separa-
tion of meta data extraction from the generic data handling
and repository management, our methodology may be used
for any of the complex data formats encountered in science.
As the experiments demonstrate, the design of HEDC allows
scientists to construct a powerful repository using minimal
hardware. If needed for performance or scalability, the very
same system can be transparently extended to run in a clus-
ter configuration where different components run in different
nodes. HEDC can be made to grow with the data and the
user needs.

Another important characteristic of HEDC is that it in-
corporates external processing into the system transparently
to the user. It does so without imposing constraints on the
nature of the processing routines. HEDC tolerates software
evolution and changes to the routines and the processing
environment. Similarly, HEDC has been designed to cope
with constant change in the underlying data (format, cal-
ibration), usage patterns (queries, analysis routines, data
collections), and derived data products stored in the system
(usually the result of new analysis routines).

Supporting external processing and data sharing opens
the door to novel interaction schemes. A scientific data
warehouse, even if hosting a huge data collection, can be or-
ganized as a set of collaborating systems. As every Stream-
Corder is in reality a fully functional server, requests may
also be sent to peer clients to allow peer to peer interaction.

Acknowledgments
We thank A. Benz, P. Saint-Hilaire, and A. Csillaghy for
their help in dealing with the scientific aspects of the RHESSI
data and for their contributions to the design of HEDC. We
are also grateful to the entire RHESSI team at UC Berkeley
and the NASA Goddard Space Flight Center.

11. REFERENCES
[1] Aladin. http://aladin.u-strasbg.fr/java/.

[2] Astrobrowse. http://heasarc.gsfc.nasa.gov/ab/.

[3] Virtual Obs. http://www.eso.org/projects/avo/.

[4] ADS. http://adswww.harvard.edu/.

[5] Banerjee, S. A DBS Platform for Bioinformatics. In
VLDB, Cairo, Egypt (Sept. 2000), pp. 705–710.

[6] Barclay, T., Gray, J., and Slutz, D. Microsoft
TerraServer: a spatial data warehouse. In SIGMOD,
Dallas, USA (2000).

[7] CIO. http://ircatalog.gsfc.nasa.gov/.

[8] CDA. http://cdsarc.u-strasbg.fr/.

[9] DSP. http://www.cacr.caltech.edu/digital sky.html.

[10] Frew, J. Data management for earth science systems.
Sigmod Record 26, 1 (1997), 27–31.

[11] Freytag, J. (Panel Chair) The future home of data.
In VLDB, Hong-Kong, China (Aug. 2002).

[12] Gamma, E. et al. Design Patterns. Addison Wesley,
1995.

[13] Gray, J., and Szalay, A. The world wide telescope.
In CACM. Vol. 45, No. 11 (Nov. 2002), pp. 50–54.

[14] Hubble Space Telescope. http://hubble.nasa.gov/.

[15] Infrared Space Obs. http://www.iso.vilspa.esa.es/.

[16] Kaestle, G., Shek, E., and Dao, S. Sharing
experiences from scientific experiments. In SSDBM,
Cleveland, USA (1999).

[17] Saint-Hilaire, P., et al. The RHESSI
Experimental Data Center. In Solar Physics 210(1-2),
pp. 143–164 (Dec. 2002).

[18] Sheikholeslami, G., et al. WaveCluster: A wavelet
based clustering approach for spatial data. VLDB
Journal 8, 3-4 (2000), 289–304.

[19] Sloan Digital Sky Survey. http://www.sdss.org/.

[20] Stoesser, G., et al. The EMBL nucleotide sequence
database. Nuclear Acids Research 27, 1 (1999), 18–24.

[21] Stolte, E., and Alonso, G. Efficient exploration of
large scientific databases. In VLDB, Hong Kong,
China (Aug 2002), pp. 622–633.

[22] Stolte, E., and Alonso, G. Optimizing scientific
databases for Client-Side proccessing. In EDBT,
Prague, Czech Republic (Mar 2002), pp. 390–408.

[23] Szalay, A. S., et al. Designing and mining
multi-terabyte astronomy archives: the Sloan Digital
Sky Survey. In SIGMOD, Dallas, USA (2000).

[24] Tsur, S. Data Mining in the Bioinformatics Domain.
In VLDB, Cairo, Egypt (Sept. 2000), pp. 711–714.

[25] Wang, J. T.-L., et al. Pattern matching and
pattern discovery in scientific, program, and document
databases. In SIGMOD, San Jose, USA (1995), p. 487.

[26] Zarro, D. SOHO synoptic database.
http://sohowww.nascom.nasa.gov.

