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Abstract. An obvious prerequisite for mobile computing devices is the ability to adapt
to different computing environments. Otherwise the devices are forced to carry with them
everything they may eventually need during their operational life time. This is neither
desirable nor feasible, thereby hinting at the need for dynamic adaptation. The idea would
be to let the environment be proactive and adapt the application rather than forcing the
application to adapt itself to every possible environment. In this paper we present a platform
for doing exactly this. Applications running on our modified JVM can be extended at run
time with new functionality. Through this platform, mobile devices can acquire on-the-fly
any functionality extension they may need to work properly in a given environment. The
functionality extensions are local in time and space: they are active only on a specific site
and just for the time they are needed. The platform can be used in both centralized settings
(with a base station providing the extensions) or in self configuring mode (extensions are
provided by peers). In this paper we describe the platform, how to use it and report on one
of the several prototypes that have been constructed.

1 Introduction

Device proliferation challenges existing software architectures and creates new types of yet unsolved
problems. For instance, a large number of mobile nodes, potentially heterogeneous in nature, is
hard to configure and administrate [SGGB99]. Similarly, devices that are continually moving from
one location to another need to be able to adapt themselves to the new locations. Otherwise, the
devices need to be overprovisioned in terms of functionality so that they can operate in as wide a
range of settings as possible. Such an approach bloats the applications, making them more complex
and resource hungry. Moreover, there will always be situations that were not foreseen in the design
or settings that have changed since application deployment. In those cases, the application will
simply no longer function.

In almost all forms of mobile computing, whether it is nomadic (a mobile device that changes
location and needs to work with different fixed infrastructures) or ad-hoc (mobile devices that want
to spontaneously interact with each other), the key to deal with such problems is adaptability.
The basic idea is that for a mobile device to work properly at a given location, it must adapt
itself to that location in both time and space. Spatial adaptation implies adopting the policy and
requirements of the current location. Time adaptation implies adopting the current policies and
requirements of the actual location. Both can change at any time and in completely unexpected
ways.

To avoid limiting the adaptation capabilities of mobile devices, we suggest not to rely entirely
on the abilities of the application. Instead, we argue that there is a need for proactive environments
capable of adjusting and extending the functionality of mobile devices. Note that this allows to
naturally address both spatial and time adaptation. When a mobile device enters a new computing
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environment, the environment provides the necessary extensions so that the device can operate in
that location at that moment. Of course, the device should be able to discard the extensions once
it leaves that particular location. The environment can be anything: a base station, a community
of devices interacting spontaneously, or just another device.

As an example of such proactive adaptation, consider a mobile robot used in different pro-
duction halls. Every time the robot enters a particular hall, it is the hall (e.g., a base station
supervising the hall) that adapts the robot to the task at hand. For instance, in one hall it might
be necessary to keep track and log every single movement performed by the robot. In another hall,
it might be necessary to make sure the robot does not perform certain actions. In yet another hall,
every movement of the robot must be sent to another robot that mirrors exactly the movements of
the first robot. As soon as the robot fulfills its task and leaves a give production hall, the behavior
extensions and additional functionality explicitly added by that hall are discarded.

An advantage of this proactive adaptation is that the program controlling the robot does not
need to be aware of any of the extensions appended at run-time. Thus, the program can be kept
small and focused on controlling the robots, leaving any adaptation to extensions acquired on the
fly. Another advantage is that proactive adaptation allows to extend the functionality of the robot
in multiple ways, ways that may not have been foreseen at the time the robot was constructed.
Finally, it is possible to change the policies and requirements of a production at any time. Newly
arrived robots will simply acquire new extensions that reflect the new policies. Robots already in
the hall will be adapted by removing the old extensions and replacing them with the new ones.
Moreover, bugs, fixes, or evolution of the software running in the robot can be done through
extensions so that the robot is kept functional until there is an opportunity to replace the code in
the robot.

Similar scenarios for adaptability exists in a multitude of mobile computing applications. An
example are PDAs entering a building being adapted with an encryption layer, a persistence
module, and a filter that prevents using certain resources. Another example are accounting modules
being added to mobile devices (e.g., lap-tops) to bill them for the use of services in a given location.
In all these examples, the key aspect is that applications do not need to establish beforehand what
they can and cannot do. Adaptation takes place through a proactive environment capable of
delivering the necessary extensions to the mobile devices, devices that must carry a platform to
dynamically acquire, apply, and discard extensions as needed.

In this paper we describe a complete system that can be used to implement such scenarios. The
system comprises two layers. The first layer resides in each mobile device and provides the support
for adaptation, i.e., it provides the ability to apply run-time extensions to applications. For this
first layer we use the PROSE dynamic AOP system [PGA02,PAGO03]. The second layer is in charge
of distributing and managing the extensions. This second layer typically resides in a base station
but can also be embedded in mobile devices for exchanging extensions in a peer-to-peer manner.
This layer is implemented using MIDAS (MIddleware for ADaptive Services), a Jini [AWOT99]
based system that can deliver extensions to mobile devices using a wireless network. Together, the
two layers can be used to extend the functionality of either single devices or entire communities
of mobile devices.

The rest of the paper is structured as follows. Section 2 motivates the proposed architecture
by looking at the infrastructure and requirements. Section 3 presents the core functionality of the
system to enable adaptive nodes, and illustrates the concepts of MIDAS. We then show in Section
4 how to use MIDAS for adapting robots in an industrial setting. Section § concludes the paper.

2 Motivation

In this section we state the requirements for proactive adaptation and discuss an infrastructure
that could address these requirements. We also comment on related work.



2.1 Requirements

As pointed out in the introduction, adaptation is a key approach to deal with the variety of
computing environments and changing settings that a mobile application will encounter during its
operational life time. Such adaptation can be achieved in many different ways. However, feasible
solutions must take into account a number of important requirements.

A first requirement is for the extension mechanism to be generic rather than application spe-
cific. In the same way mobile devices cannot foresee all possible situations they will encounter,
it is also not possible to predict which applications will require adaptation. Furthermore, since
proactive adaptation requires a certain infrastructure, it is also not reasonable to provide such
infrastructure on an application basis. Whatever the infrastructure is, it must work with a wide
range of applications.

A second requirement is for the extension mechanism and supporting infrastructure to be
entirely symmetric. In other words, if a mobile device is capable of receiving extensions, it should
also be able to provide extensions to other nodes. Such ability does not need to be used in all cases
but should not be excluded by design. For reasons of space, we concentrate in this paper mostly
on solutions involving a base station although the ideas presented and the system being described
can be used without modification in a peer-to-peer setting.

Finally, and for obvious practical reasons, the mechanism used for adaptation through function-
ality extensions must be secure to avoid that it is misused and tampered with. Secure adaptation
involves two aspects: making sure that the extension comes from a trusted party and making sure
that the extension does not access system resources if it is not supposed to do so.

2.2 An infrastructure for proactive adaptation

Interactions between clients and service providers have been traditionally supported by middle-
ware. Traditional middleware mainly helps to provide a uniform view of a system, in spite of the
possible heterogeneous nature of the underlying components. The middleware also provides func-
tionality that facilitates the development of applications over such heterogeneous components. For
instance, the Corba Component Model [CCM97]) adapts services with transparent middleware
functionality for implicit context, authentication and authorization, etc.

In conventional settings, such service adaptation is based on a fixed server architecture. What
we propose is to make any mobile computing environment act as a middleware server capable of
adapting at run time any application entering that environment. Since doing so for any possible
mobile computing environment would be next to impossible, we have concentrated our first efforts
in Java based applications. Hence, the idea is to provide a nomadic infrastructure [BCKP95] where
applications running on a JVM can be provided with extensions (also written in Java) that modify
their behavior. The problem turns then into how to adapt Java programs at run time and how to
manage and distribute Java extensions under the constraints imposed by the requirements listed
above. In what follows we describe step by step how these two problems can be solved.

2.3 Related work

The type of adaptation we advocate is somewhat different from the conventional notions of adap-
tation and context awareness [SAW94]. What we propose is to dynamically extend or modify the
functionality of an application. This is different from adaptation based in sensing the environ-
ment and choosing between different pre-programmed options. It is also different from adaptation
based in obtaining data about the environment (either by the application itself or the environment
provides the data) and changing behavior according to an established program. In what we pro-
pose, adaptation means adding functionality that was not there before. This is difficult to achieve
with current technologies. The reason is that there is no generic way to augment at run-time the
functionality of an application unless this was foreseen at development time.

The explicit participation of the environment in the adaptation of underlying applications has
been explored in the Odyssey system [NSNT97]. This form of adaptation is known as application-
aware adaptation. Application-aware adaptation has been used, for instance, to hide the effects of



mobility using replication and cache consistency techniques. Conceptually, this work is related to
our approach since it also advocates an active implication of the infrastructure in the adaptation
of applications.

The same need to shift a part of the adaptation logic away from the application has lead to
approaches that propose new software architectures to support adaptive systems [ECDF01,KF01].
Thus, ICrafter [PLF+01] advocates the move of intelligence from the end-points to the resource-rich
infrastructure. ICrafter uses pattern matching techniques to overcome the need for standardized
interfaces, and relies on user interface generators to create functionality for new services. The
user interface generators in the ICrafter design roughly correspond to the application-aware in-
frastructure we want to associate to each location. However, it is application specific and some
of the ideas might be difficult to generalize. In our case, we use aspect-orientation techniques
[KLM*97,0L01,BH02] to ensure an application and adaptation neutral platform.

Finally, it is worth mentioning the ongoing work in dynamic and adaptive middleware. An
example is an adaptive service layer in CORBA [ZBS97] that provides horizontal support for
the simultaneous adaptation of several applications. A step further is represented by reflective
middleware [APW01,CBCP01,Bea01], which opens the definition of the infrastructure and allows
to dynamically reprogram the service layers. Implementations of reflective middleware can be
found at the CORBAng [EGK199] project which uses meta-models to structure a meta-space.
Some approaches [YKO01] even propose dynamic hardware-reconfiguration to support adaptability.
The Cactus project [HSHT99,CHS01] is another good example of how adaptive software systems
can be used in distributed environments. While these approaches represent considerable progress,
we believe our approach complements them by addressing a more generic form of adaptation.

3 System architecture

In a first step, we describe how to extend the functionality of an application at run-time. In a
second step, we describe the management layer for extensions.

3.1 Step 1: Generic support for run-time extensions with PROSE

There are many similarities between the problems addressed by conventional middleware archi-
tectures for fixed computing and the type of adaptations we envision for mobile settings. For
example, when the problem of passing implicit context information along a remote call translates
into adding functionality at a large number of points in the execution of an application, such as
all incoming and outgoing method calls.

In such cases, it is not sufficient to instantiate new components into an existing service. One
must actively modify existing components. With this in mind, we turned to Aspect Oriented
Programming (AOP) [KLM*97] as the most suitable approach to address this problem.

AQP allows adding extensions to an existing application. AOP is originally intended for exten-
sions that cannot be easily expressed using traditional object-oriented techniques like inheritance.
The description of such extensions is based on the concept of aspects, the part of a software system
that affects the behavior of a component. An aspect is defined by a crosscut and a crosscut action.
A simple aspect example may be:

before methods-with-signature ‘void *.send*(byte[] x,..)’
do encrypt(x)

This aspect specifies that in all methods whose name starts with “send”, and which receive
a byte array as a parameter, the byte array must be first encrypted. The crosscut of this aspect
is the collection of method entries in a given application that matches the specified signature
patterns. In AspectJ [XC02,LK98], e.g., crosscuts contain patterns for matching the invocations
of method(s) of a set of classes, access and modification of objects fields, and exception handling.
The crosscut action (here, the encryption of the byte array) is the code to be inserted at (before
or after) the points defined by the crosscut. The act of inserting the new code, thereby changing



the behavior of the application, is performed by a so called weaver tool. Weavers are typically
based on a preprocessor or a specialized compiler as AOP was originally designed as a compile
time technique.

Such platforms for aspect-oriented programming [XC02] are not appropriate for expressing run-
time adaptations, because they bind aspects (extensions) and application classes at compile-time.
The alternative is to modify the application code at run-time. For this purpose, we have developed
PROSE ! (PROgrammable extenSions of sErvices), a system in which aspects are first-class Java
entities, and all related constructs are expressed using the base language, Java [PGA02,PAGO3].
PROSE allows programmers to:

— adapt the functionality of a running application by dynamically injecting an extension
— make adaptation secure by providing the appropriate protection from malicious extensions
that may use the proactive adaptation as a trapdoor.
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Fig. 1. The run-time adaptation process in PROSE

Addressing run-time adaptation in PROSE To add functionality at run-time, PROSE lever-
ages the fact that most modern JVMs [Sun02,SOT+00] uses a just-in-time (JIT) compiler. A JIT
compiler continuously translates at run-time code being interpreted by the JVM into native code.
The native code is equivalent to the Java byte-code, but can be executed more efficiently. PROSE
adds extension functionality by instructing the JIT-compiler to insert additional actions (advice
code) when transforming the bytecode into native code.

Consider as an example the problem of extending the behavior of a robot R. For simplicity,
assume that the movements of the robot are controlled by only two methods, moveArm and

! PROSE is available for download from our web site http://prose.ethz.ch



readSensor. An aspect A defines the policy for the robot actions in a given production hall. A
will be woven through the robot application whenever R enters the production hall. For simplicity,
we consider that A adds the middleware functionality for authorization. With this, each execution
of R.moveArm is dynamically extended such that it is preceded by a call to auth(user). By this
transparent authorization, the production hall has the ability to prevent the robot from executing
actions on behalf of clients that are not authorized. Figure 1 shows how PROSE modifies the
translation of Java bytecode into native code. R’s functionality is translated into native code,
and PROSE adds minimal hooks (or stubs) before the actual code of the methods. Stubs must be
woven at all potential join-points in R’s code (such as field changes, method boundaries, exception
throws and handlers, etc.). In our case two native instructions are added before the native code
corresponding to move Arm. Every time moveArm is called, PROSE is notified (step 1). When this
happens, PROSE checks whether any additional action must be executed, and eventually executes
all actions corresponding to that join-point (step 2).

This layer of indirection — the stub code — leads to an increase of the resulting code size (since
code is added at locations where no advice is needed). However, given the small size of the minimal
hooks, the impact on performance is small [PAGO03].

Addressing secure execution in PROSE Functionality extensions received from foreign hosts,
could contain malicious code. To prevent this, PROSE was designed in such a way that the
extension code is entirely isolated from the original code of the application. This allows practically
any Java application to use the standard Java security model [SM] to run in a sandbox the
extensions received from remote hosts . Through this, PROSE defines an aspect sandboz in which
interceptions, although spread through various components, are treated as if they belong to the
same component.

With PROSE on every mobile node we gain the capabilities of AOP together with the ability
to perform the weaving at run-time without disrupting the application. With this, we achieve the
necessary generality as well as the support for dynamic adaptation we are aiming at.

3.2 Step 2: Extension management with MIDAS

When every mobile node runs on a PROSE-enabled JVM, it can be extended at run-time —
provided that an extension is woven into the system at the right time and place. Adding and
removing extensions, and guaranteeing that the right extensions are inserted into the appropriate
nodes is an important task that guarantees the locality of adaptations. This task — the extension
management — is provided in our architecture by MIDAS. MIDAS builds on top of PROSE and
provides the following services:

extension distribution: discover new nodes joining a local environment, distribute extensions
to them and then activate these extensions using PROSE,

locality of adaptations: keep extensions alive for the time a mobile device reaches that location,
revoke extensions for those nodes that leave the location, and allow the replacement of obsolete
extensions with new ones in case the local policy evolves or it is changed, and

security: enhance the sandbox security model provided by PROSE with a trust model in which
extensions are accepted by mobile nodes only if they come from a trusted party.

Addressing extension distribution To achieve this goal, MIDAS separates nodes into two roles.
Extension base nodes contain a list of extensions. They discover new nodes joining the network and
send extensions to the newcomers. Extension receivers can get extensions from extension bases.
We assume that each extension receiver has PROSE activated on its JVM. When it obtains an
extension from an extension base, it immediately inserts the extension using the PROSE APIL
Extension receivers also discard extensions when they leave a network or lose contact with the
extension base.



By appropriately assigning extension base and extension receiver roles, one can achieve various
forms of adaptations. At one extreme, each node can contain an extension base. When it joins a new
community, it distributes its extensions and receives others from the existing nodes. This type of
organization is appropriate for creating an information system infrastructure in an entirely ad-hoc
manner. At the other extreme, each physical location may have a base station as extension base.
All other nodes (e.g., the mobile nodes) are extension receivers. This organization is appropriate
for adaptations that correspond to infrastructure and organizational requirements. Between the
two extremes, many other configurations are possible.

Addressing revocation of extensions The proactive platform must be designed for device
mobility. This implies that extensions must transiently adapt a service (for as long as the service
is working in a given space). To model this behavior, the extensions are leased to each node (i.e.,
to the adaptation service of a node). It is the responsibility of each extension base to keep alive the
functionality it has distributed among nodes. When a node leaves a given space, the leases on the
extensions acquired in that space fail to be renewed and they will be discarded. Each extension
is notified before leaving a proactive space so that it can execute a shut-down procedure ensuring
that all current operations are completed and a consistent state is achieved. The revocation service
is achieved as follows:

1. each MIDAS extension base keeps track of its extension activity (what nodes where adapted,
at what point in time) and optionally implements a simple roaming algorithm to deal with
nodes migrating between areas.

2. each MIDAS extension receiver keeps track of what extensions have been obtained from what
base. If a MIDAS base fails to keep a given extension alive, the extension is immediately
withdrawn from the system. By autonomously withdrawing extensions, extension receivers
address the space and time dimension of adaptations.

Addressing security The layer of security provided by PROSE (in which extensions are run
in a sandbox) is enhanced by MIDAS with an additional layer of verification. In MIDAS each
extension instance has to be signed. This ensures that the received extension has been instantiated
and configured by a trusted entity. The verification of the originator of an extension is done before
insertion of the extension in PROSE. Each extension receiver node (and thus each mobile device)
may define its preferences and trusted entities.

3.3 Example of MIDAS

The best way to describe how MIDAS works is through an example. Consider a service mpg
exported by a robot (R). Figure 2.a illustrates this situation. What we would like to do is to adapt
the functionality mpg of robot R as the robot enters a production hall. This adaptation occurs
through the adaptation service that the robot carries with it (Figure 2.b).

The first step in the adaptation process is to detect the adaptation service of the node. For
service detection and brokerage, one can use existing platforms for spontaneous networking. In
our case, we have chosen Jini [AWO99]. The adaptation service advertises itself as a Jini service,
thereby announcing its presence to the environment (assume for simplicity that the environment
is a base station). The environment recognizes the adaptation service and, therefore, knows that
the node can be adapted. Let’s assume the production hall has a set of predefined adaptations.
Furthermore, assume that these adaptations implement an access control policy and a quality
assurance mechanism that logs persistently all changes to the state of a robot (represented as * in
Figure 2) in a database associated to the production hall.

The two adaptations are sent to the adaptation service of the new node as aspects specifying
how and where the application has to be changed (step 1 in Figure 2.b). The activation of the
aspects comprises two steps. The first is to include in mg the code necessary to trap the execution
at the appropriate points (step 2’ in Figure 2.b). The second is to instantiate the extensions that
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Fig. 2. (a) Remote method call of mr on a node (b) Node containing the adaptation service and (c)
Remote method call of mpg after the node is adapted.

will carry out the adaptation (step 2” in Figure 2.b). Once the adaptation service has activated
the incoming aspects, node R reaches the state shown in Figure 2.c.

At this stage, the node is adapted and its functionality has been modified (Figure 2.c). When
mp is invoked (step 1, Figure 2.c) and before the method mp is executed, a first interception
occurs (step 2, Figure 2.c). This first interception is used to call a module that extracts session
information like the callers identity. After the execution of this first extension is completed, another
interception occurs (step 3, Figure 2.c) that will invoke the access control extension. The access
control extension uses the session information to determine whether the call should be completed
or not depending on the policy defined as part of the extension. If the call can be completed,
the execution of mpg begins. Assume that as part of this execution, the robot changes its internal
state (*). These changes are intercepted and propagated by the quality control extension (step 4,
Figure 2.c) to a database at the base station. Once the changes are safely stored, execution of mpg
resumes and, upon completion, the results are returned to the caller (step 5, Figure 2.c).

The important issue to understand in this procedure is that R needs to carry neither the
interception points nor the extensions. All R needs is a PROSE enabled JVM and have the
adaptation service. The rest is provided by the context and dynamically added to the application.

For simplicity we have omitted many details of the execution of the adaptations. In addi-
tion to the ones described, there are other adaptations that are transparently added to R. These
adaptations take care of marshaling and unmarshaling arguments, adding and removing MIDAS
specific information to each call, etc. Of the extensions used as examples, the session management
extension is an implicit extension needed to implement other extensions (like the access control).
When an extension that requires session information is added to a node, the session management
extension is automatically also added to that node. The access control extension is an example of
an adaptation that does not require to know the source code. It is enough to know the published
interface of mpg. There are also many useful extensions which don’t know anything of the applica-
tion, not even the interface. For instance, it is very easy to design an extension that will encrypt
every outgoing call from an application and decrypt every incoming call. Another example is a
variant of the logging extensions that records every call to an application.

4 Application development for proactive environments

We have already used MIDAS to implement several prototypes and various forms of extensions
(e.g., [PA02,PAGO03]). These prototypes have been used for testing and benchmarking. They pro-



vided us with feedback on the overall functionality, and we could determine how easy was for a
programmer to start working with an extensions.

4.1 Basic design
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Fig. 3. (a) Software architecture in each robot and (b) the extension application for hardware monitoring.

Once the adaptive middleware infrastructure is in place, developers can start to design concrete
environments that impose their own policy and services to all applications within their boundaries.
This involves identifying the necessary adaptations, identifying where they will take place, and
building all the interfaces required by the environment. In the case of the robots, we employ the
RCX controller available in Lego’s Robotics Invention System [Leg] as the platform for developing
the robots. For communication purposes we use Jini, although any other protocol for spontaneous
interaction (e.g., [LCX101]) could be considered.

Figure 3.a shows the basic architecture of the software attached to each robot. The upper layer
defines the functionality for inter-operation with other nodes. Depicted from left to right, this layer
defines (i) the services the node makes available to other nodes, like event processing, interface
publishing, or lease management (provided by Jini in this case) and (ii) the adaptation service of
MIDAS.

The second layer defines the application logic of the robot. This layer defines small programs
(tasks) that define an objective for the robot (e.g., searching for a particular object). A task is a
basic program that decides what the robot is going to do. A task is broken into activity requests
(hardware macros) that are sent to the lower layers, modeling the hardware. A good example of a
hardware macro would be, e.g., “turn left 30 degrees”. A task is also notified whenever an event of
interest is detected by the sensors. When this happens, the hardware completely freezes its activity
and notifies the robot application layer of the occurred event (e.g., a touch sensor identified an
obstacle). A task may decide to continue the interrupted command, or abort it and continue with
a new sequence task.

Although the task model allows robot autonomy, there are situations in which a robot must be
controlled by a human. Imagine, for example, that a robot reaches a dead end and is not capable
of autonomously leaving that space. The direct mode layer is basically an interface that allows
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direct connection to the robot hardware. The overriding layer is a way to override an existing task
without using the direct mode.

Both the inter-operation layer and the robot application layer are implemented as Java pro-
grams running on a H3870 iPAQ PDA.

The third layer contains software models and macros for operating all operative parts of the
robot, e.g., motors and sensors. This layer offers a homogeneous view of the underlying hardware,
and it is implemented using the LeJOS [Jos02] operating system running on LEGO’s RCX device
controller. LeJOS is a tiny Java VM operating system, with a footprint of less than 20 kBytes. The
hardware entities have been encapsulated in a Device class with Sensor and Motor as sub-classes.
For each particular device (e.g., light sensor, motion sensor) further sub-classes are added to the
system.

Fig. 4. A plotter prototype integrated in the proactive platform.

4.2 Application
4.3 Target scenario

Of the several prototypes developed using this architecture, we will describe here the plotter of
Figure 4. This robot acts as the head of a printer as it moves a marking pen across three dimensions.
The same robot can be used to control any other device in a similar manner (a saw, a scalpel,
a drill, an electric contact, etc). Movement across each dimension is controlled by a motor. The
overall movement is determined by a drawing program that exports a drawing interface as a Jini
service. The program and the robot do not contain any code beyond that related to drawing.

4.4 Adaptation example

An first example of adaptation is a hardware monitoring and logging extension. The idea is to
record every movement of the robot and to store these movements persistently. Figure 3.b shows
the situation after the robot has received an extension that monitors hardware activities. For each
one of the motors, any calls to their proxy objects will be intercepted by the added extension (the
gray box). For each method invocation of the motor proxy, the extension logs the time when the
command was issued, its duration, as well as the identity of the robot (1). This data is first locally
stored and then asynchronously sent to a base station (2). At the base station, the data is stored
in a database (3).
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The extension for hardware monitoring and logging is very concise. A simplified version of it is
depicted in Figure 5. It is a 100% Java class compiled and instantiated on the base station. Line
6 specifies that entries and exits of any methods belonging to a Motor class must be intercepted.
The REST parameter indicates that the signature of the method (specific arguments) are not
important. Once intercepted, PROSE will call ANYMETHOD (lines 6-9). This method does the
actual logging by calling the ownerProxy object.

1 class HwMonitoring extends Aspect {
// the remote owner

2

3 RemoteOwner ownerProxy;

4

s Il the interception specification

e public void ANYMETHOD(Motor thisMotor, REST params)

|

8 ownerProxy.post(thisMotor.getld(), System.currentTimeMillis(),...)
o }

10 }

Fig. 5. An extension for remote monitoring.

It is important to notice that neither the robot nor the program controlling the robot is aware
of the extension. The extension can be added or removed as needed. If the robot is moved to a
different location, that location can add a new extension that indicates where the data must be
sent for persistent storage. Or, within the same location, the extension can be exchanged for a
new one that indicates that the data must be sent to a program that shows the movements in a
graphic display. Similar extensions could be used, for instance, to disable certain movements of
the robot, or certain combination of movements, to replay sequences of movements, etc. A clear
advantage of this form of adaptability is that devices only need to carry their basic functionality.
Anything else are location specific adaptations inserted or extracted as needed.

4.5 Applications of the adaptation example

The simple monitoring and logging extension described can be used in many forms. We have
developed several such applications by making the base station itself available as a Jini service. One
can, thus, connect to the base station and query the database that stores all movements performed
by robots being monitored by the base station. Figure 6 is a screen-shot of a client application
connected to the base station. On the left side, it displays a list of all the motor actions ever
executed by the robot named robot:1:1. Out of the action list, a selection was transferred to the
right panel. The right panel allows manipulations of these movement sequences. Some examples
of useful manipulations are:

Remote replication If the robot is being controlled by a human, it is possible to use the extension
to monitor all the moves and feed them to an identical robot in a remote location (or to a collection
of identical robots in other locations). That way one can either duplicate the work or follow up
what is being done. It is also possible that the replication of the work takes place at a scale different
from what is being done by the original robot. The only thing needed is to amplify or reduce the
extracted sequence of movements to adjust it to the new scale.

Simaulation In difficult or important situations, one may want to record all movements performed.
That way, if an accident or failure occurs, one can replay a part of the sequence of movements to
see if the failure can be reproduced or better understood. This feature is particularly interesting
if the failure is due to the interaction between different robots: the system can be instructed to
replay the sequence of movements of all robots at the right relative time, thereby reproducing the
interaction between them.
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(2 @ Robot Moniter B
manitoring
[rabot:1:1 - |
log maotion
robot [ date f time | action |motors action | motors  [dur]... | axecute
robot:1:1 [10.04.02 13:... [forward A forward [ 450
robot:1:1 |10.04.02 13:... |start A start c 669 :|
robot:1:1 |10.04.02 13:...|stop A stop c 22 clear
robot:1:1 |10.04.02 13:... forward C forward [ 452 -
robot:1:1 10.04.02 13:.. start C start C 1269 invert
robot:1:1 |10.04.02 13:.. stop Z ’T
robot:1:1 | 10.04.02 13:... forward C =
robot:1:1  10.04.02 13:... start C save
robot:1:1 |10.04.02 13:.. |stop C
robot:1:1 |10.04.02 13:... [forward A
robot:1:1 |10.04.02 13:.. |start A
robot:1:1 |10.04.02 13:.. |stop A
clear Mew robot rabot:1:1 appeared!

Fig. 6. A screen-shot of a simple hardware monitoring tool.

Control 1t is possible that when the robot is used in certain locations, one might want to limit
what the robot can do. For instance, one may forbid movements beyond certain coordinates so that
certain parts of the paper remain untouched. If a drill is used, one may prevent lateral displacement
of the drill when it is brought down. For this, the monitoring extension only needs to incorporate
the coordinates or sequence of movements that are not allowed and simply check before allowing
the movement to take place.

Again, the relevant point in all these potential applications is that none of them require to
have any code in the robot. Depending when and how the robot is used, adaptations are added
and removed as needed. Moreover, new adaptations can be easily designed as the use of the robots
changes or evolves over time. This greatly simplifies the design of the software for the robot itself
but also makes the maintenance of the adaptations much more manageable (compared with the
case where they are embedded in every robot). This feature makes the approach highly attractive
in many industrial settings.

4.6 Discussion

Our experience with the platform for proactive adaptation has been extremely encouraging. One
of our initial goals was that the programming of extensions should be easy to use by application
programmers. We have had this expectation confirmed during the past year, as students involved
in projects and courses had to use MIDAS for exercises and development projects. Indeed, if a
student was proficient in Java, a few days sufficed for the student to be able to program extensions.
This user experience lead to new applications we did not consider in the beginning. One example
is a security extension that intercepts readings of all sensors of the robots. The security aspect
intercepts all service calls and decides, before the execution of the application logic, whether the
remote caller has the right to execute the intercepted method. If the access is denied, the execution
is ended with an exception. Another example are applications where the “age” of the device
corresponds to the trust associated to that device. A proactive context can add an extension that
records the “birth date” of a device. The very same extension may intercept all service invocations
of all possible devices and decide how to proceed depending on the device’s age. We are at this
stage considering other alternatives also suited for ubiquitous computing environments [KZ01].
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One important issue is the cost of having a platform for run-time adaptation activated in
each node. When no extensions are added, an overhead of about 7% (measured using a SPECjvm
benchmark [SPE]) could be observed. When adding a do-nothing extension that traps method
entries, all methods not affected by interceptions are not slowed down. For those methods where
interceptions are performed, an overhead of roughly 900ns can be expected. For comparison, a
void non-intercepted interface call costs 700ns on a Pentium 2, 500 MHz CPU. We measured the
overhead of extensions implementing security, transactions and orthogonal persistence. In all cases
the cost of the interceptions was much less then the cost of executing the additional functionality,
indicating that the platform overhead is negligible. The results of these measurements are described
in [PAGO2].

Future work MIDAS heavily relies on the Jini infrastructure. As Jini is required on all partici-
pating nodes, a resource-scarce device would need a full Java runtime environment. To reduce this
resource consumption, some parts of MIDAS are being re-implemented to obtain a smaller foot-
print. Further we are looking at tuple spaces [Gel85,LCX*01] to get a more flexible and expressive
platform for distributing extensions.

5 Conclusion

In this paper we have presented a generic platform for proactive middleware. The platform sup-
ports the adaptation at run time of applications by extending their functionality with new code
that enhances, modifies or controls the functionality already present in the application. We have
described the architecture in detail and shown with an example how it can be effectively used
in different industrial settings. We are aware that the type of proactiveness we propose is not
suitable to all form of mobile computing. Nevertheless, our experience in developing several proto-
types using the proposed platform show that the technology works quite well in nomadic settings,
where high-end mobile nodes like PDAs, laptops or robots interact using wireless networks. Such
devices cover already a wide range of mobile computing applications. The prototypes built also
demonstrate that our approach can help to significantly reduce some of the cost associated to the
maintenance of widely distributed systems and simplify the process of developing software capable
of working in mobile computing scenarios.
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