Just-In-Time Aspects: Efficient Dynamic Weaving for Java’

Andrei Popovici, Gustavo Alonso, and Thomas Gross
Department of Computer Science
Swiss Federal Institut of Technology Zirich
CH-8092 Zziirich, Switzerland

{popovici,alonso,trg}@inf.ethz.ch

ABSTRACT

Recent developments in service architectures suggest that
run-time adaptations could be implemented with dynamic
AOQP. In this paper we discuss application requirements on
run-time AOP support and present a system that addresses
these requirements. We provide basic support for weaving
using the Just-In-Time compiler, while the AOP system is
treated as an exchangeable module on top of the basic sup-
port. This approach allows us to provide a low run-time
overhead, AOP system flexibility, and secure weaving. We
provide an extensive empirical evaluation and discuss the
trade-offs resulting from using the JIT compiler and a mod-
ularized architecture.

1. INTRODUCTION

Aspect-Oriented Programming (AOP) [8] holds the promise
of composing software out of orthogonal concern spaces [20].
More recently, there has been a growing interest in using
dynamic aspect-oriented techniques [13, 11, 3, 16, 12] to
express run-time adaptations of services.

In our research [18, 15] we have encountered a number
of design problems that can be addressed by using dynamic
AQOP. A first example is hot fixes in web services. A hot-fix
is an extension applied to a running application server to
modify the behavior of a large number of running compo-
nents. Hot fixes can be used for software patches, security
breaches, dealing with unexpected changes in network traf-
fic, server availability, or providing client-specific services
[21]. A second example is adaptation of mobile devices. In
this case, dynamic AOP offers flexibility and simplicity over
existing solutions based on reflective middleware [5, 2].

A potential drawback of dynamic AOP is the performance
overhead. In addition, dynamic AOP may be insecure since
it can allow weaving of malicious advice code. Finally, ex-
isting solutions for dynamic AOP are monolithic systems.
They do not cleanly separate the join-point model (which

*Effort sponsored in part by the Swiss National Science
Foundation NCCR MICS (Mobile Information and Com-
munication Systems).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on thefirst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

Copyright 2001 ACM X-XXXXX-XX-X/XX/XX ..$5.00.

represents the actual support for AOP) from the AOP sys-
tem (we use the term AOP system in the sense of [6]). Some
applications, however, require to use their own AOP systems
on top of an existing join-point model. Solving these limita-
tions would help dynamic AOP to become more widespread.
In this paper we address these questions by:

e formulating a number of requirements to dynamic AOP
systems based on relevant use-cases,

e addressing these requirements with a modular system
architecture that separates the support for dynamic
AOP (provided by the just-in-time compiler) from the
AOP system, and

e presenting a prototype that identifies the cost of such
system (in terms of execution overhead and implemen-
tation complexity).

The paper is structured as follows: In Section 2 we de-
scribe several requirements on dynamic AOP. In Section 3
we define the basic architecture of the system. The imple-
mentation of the Java Virtual Machine (JVM) support for
aspect-orientation is explained in Section 4. Section 5 il-
lustrates the design of the complete system including the
instruments needed for weaving aspects. The experiments
involving dynamic AOP in a Jini network are described in
Section 6. We conclude the paper in section 7.

2. MOTIVATION
2.1 Run-timesupport for mobile computing

Most mobile devices have the constraint of limited stor-
age space. This implies that a mobile device cannot be pro-
vided from the start with all software components needed
in various locations. To overcome this problem, the mobile
device must dynamically acquire the functionality it needs
to operate in a certain location and discard this functional-
ity when it changes location. This functionality has often a
cross-cutting character. Hence the ability of acquiring and
discarding cross-cutting functionality upon joining or leav-
ing a network would be beneficial for many applications.

Illustrative examples are large conferences, trade shows,
business meetings, or exhibition halls where participants are
provided with computing devices such as lap-tops, desktops
or PDAs. Customers may want to buy products from re-
tailers after consulting their electronic catalogs. Retailers
and customers may want to keep a log of their electronic
transactions for later reference and settling of disputes, etc.
Our main objective with the implementation of such sce-
narios is that participants should not be required to carry



with them all the software needed for security, privacy, data
persistence, logging, arbitration of electronic transactions,
etc. This functionality should be a property of the environ-
ment and should be available upon demand. Using current
technology, this is difficult to achieve. The problem is that
modern information systems (e.g., Enterprise Java Beans
[9]) combine middleware and application logic at deployment
time. As a consequence, all participants would have to stop
their devices in order to install the location-specific software
components before they could resume their work. What is
needed is a service infrastructure equivalent to network-wide
containers where important functionality for transactions,
persistence and security can be dynamically woven through
all mobile services joining the network and unwoven from all
services leaving the network. To achieve this, each mobile
device must carry a dynamic AOP system. Using this sys-
tem, it can receive aspects that implement the middleware
functionality of the current network. A preliminary eval-
uation of a network container prototype [15] revealed two
important requirements:

Requirement 1: Efficiency under normal operations.
Under normal operations (no woven aspects), the dynamic
AOP system should not lead to significant performance degra-
dation.

Requirement 2: Secure and atomic weaving. First,
run-time weaving must be secure: one should be able to con-
trol what local resources can or cannot be used by advice
code originating from foreign hosts. Second, the weaving op-
eration should appear to the application as one atomic step.
Intuitively, imagine an aspect that adds advice around 100
methods of a running base application. If the weaving oper-
ation is not atomic, the advice is added one join-point at a
time. This may lead to a situation where half of the meth-
ods execute the additional functionality, while the other half
still uses the old base code.

2.2 Hot fixesfor application servers

HEDC, HESSI Experimental Data Center, [18] is a multi-
terabyte repository built for the recently launched HESSI
satellite. HESSI observes the sun and builds catalogs with
events of interest such as sun flares. In HEDC, scientific
users are confronted with large catalogs they need to browse
and update. At a certain point in time, an older servlet-
based web service for browsing the database was re-activated.
Since the main system had evolved in the meantime, the web
service resulted in performance degradation for all users (in-
cluding those who were not browsing the catalog via web).
The analysis identified the problem: for each http request, a
session object was created that incurred a significant work-
load on the database server.

Fixing the problem (adding pooling for session objects)
revealed how useful aspect-oriented hot fizes can be. First,
the problem has a clear cross-cutting concern: it requires re-
placing code (e.g., new Session()) which is scattered through
multiple servlet classes with code that reuses session from
previous invocations. Second, in a service environment, the
load on the database can be decreased considerably when
the first corrections are applied without taking the service
off-line. Third, the system was based on a proprietary li-
brary (the source code was not available). Therefore, a way
to apply the fixing aspect without relying on the source code
would have given the necessary time to obtain the sources

and re-factor the system properly.

The HEDC case is not exceptional, and many other ap-
plications face similar problems [21]. Assuming that each
application server would have an AOP system capable of
dynamic weaving, this and related problems could be solved
efficiently. To achieve this, a number of issues must be ad-
dressed by such a system:

Requirement 3: Efficient advice execution. Executing
advice functionality needs to be done efficiently, as these
systems typically exploit the available resources (CPU) to
the maximum.

Requirement 4: Flexibility. The application should al-
low exchanging the AOP system. This would allow develop-
ers to use the most appropriate AOP system for each case
(e.g., an AOP system that addresses the particular types
of cross-cutting concerns required by the fix or the AOP
system best known by the programmer).

3. BASIC ARCHITECTURE AND GOALS
3.1 Addressing requirement 1

There are two basic levels where to locate the dynamic
weaving support in a Java-based environment:

o at the class-loader level, by transforming the byte-code
before it is loaded in a JVM,

e at the just-in-time (JIT) compiler level, by inserting
the advice directly into the native code generated by
the JIT compiler.

Existing dynamic AOP systems like JAC [13] and Handi-
Wrap [3] enhance the original code with minimal hooks that
enable dynamic weaving. Run-time weaving of an aspect A
actually corresponds to the activation of those hooks matched
by A. Because hooks are woven at all potential join-points
(e.g., method calls, method executions, field sets, field gets),
the impact of the hook code must be kept minimal, even
when no aspects are specified.

In this respect, we expect hooks woven at byte-code level
to cost more than those woven at JIT level (the reason being
that native code can be much more optimized). For exam-
ple, the results published on Handi-Wrap show an overhead
of around 10% for method boundary join-points. Our initial
performance assessment of the JIT solution indicated that
the same overhead of 10% can be expected for enabling join-
points at both field sets, field gets and method boundaries.
Hence, using a JIT-based weaver seems to be a promising
way of maintaining a low overhead under normal operation
(requirement 1).

3.2 Addressing requirement 2

A JIT-based weaver can weave minimal hooks (like JAC
and Handi-Wrap) or weave the actual advice code (like As-
pectJ [22] does at compile-time). With respect to require-
ment 2, each option has advantages and disadvantages.

Minimal hook weavers. Hook-based weavers can avoid
security problems (weaving of malicious advice code) in a
straightforward way. When hooks are woven through the
base code, the actual advice code can be kept separate from
the base application. This separation fits well with existing



Aspects | (1)

| Join-Point Generator Weaver :
! [search matches  (2.1)] : I Dynamic
: [static checks (2.2) ’ execute advice (5.2) ‘ I AOP
| [create advice (2.3) ’ q ic checks (5.1) ‘ :
I [create join—points (2.4)] ynamic checks>: , Engine
I ________________________________ 4
stop requests | (3) (joinPoint, AOP tag) 1(4)
T L . (e ! _
: Join-Point Callback 1 Execution
I Manager Manager I Monitor

Java Virtual Machine

Java Virtual Machine

Figure 1: Two-layer architecture of the AOP support in a JVM.

security models that control the access to system resources
based on the origin of entire classes or archives (e.g., the
Java Security Model [19]).

Atomic weaving can be easily implemented in a hook-
based weaver. This is possible because of the additional
indirection layer represented by hooks: every time when a
join-point is reached, a hook method is called, not the ac-
tual advice. Weaving atomicity can be achieved by blocking
advice execution in the hook method until the weaving op-
eration completes.

Advice weavers. Alternatively, the JIT compiler could
weave the actual advice code. This approach may result
in more concise advice. By contrast, the advice added by
hook weaver may have to access the local environment of a
join-point in a reflective way [16]. An advice weaver is also
faster than hook-based weavers because it avoids indirec-
tions. However it increases the complexity of JIT support
to address requirement 2: weaving advice code makes re-
JITing necessary once an aspect is removed or exchanged.
It moves the responsibility of dealing with atomic advice ac-
tivation to the JIT-level, thereby increasing the complexity
of the JIT compiler. Finally, the advice code would not be
separated from the original code. This would hamper direct
usage of the Java Security Model, which would have to be
integrated within the JIT-compiler.

From these ideas, we opted for a minimal hook weaver
which inserts hooks at all potential join-points.

3.3 Addressing requirement 3

For the same reasons explained above we expect the over-
head incurred by the JIT — when actually calling an empty
hook — to compare favorably with the overhead incurred by
other approaches. With this in mind, a JIT-based system
addresses requirement 3. We show such a comparison in
section 5.2.

3.4 Addressingrequirement 4

A JIT-based weaver trades portability for performance.
The native advice code is smaller and more efficient, but
the system is tightly coupled with a particular JVM and
JIT version. To solve this problem, we propose a clean sep-

aration between the aspect-support embedded in the JVM,
(the execution monitor) and the application specific AOP
system (the dynamic AOP engine). The execution moni-
tor exports a Join-Point Model API to the engine. By doing
this, it provides the basis for exchangeable AOP engines,
thereby addressing requirement 4.

3.5 Architecture

Figure 1 gives an overview of this type of architecture.
In the upper layer, the AOP engine accepts aspects (1) and
transforms them into basic entities like join-point requests
(2.1 -2.4). A join-point request is a description of the code
location where the execution must be interrupted in order
to executed advice. It activates the join-point requests by
invoking methods of the execution monitor (3). The execu-
tion monitor is integrated with the JVM. For example, when
the execution reaches one of the activated mjoin-points, the
execution monitor notifies the AOP engine (4) which then
executes an advice (5).

The main focus of the execution monitor is to address the
requirements 1 and 3.

The design of an AOP engine is much less constrained
than that of an execution monitor. Its responsibility is to
define the mechanisms for atomic and secure weaving (re-
quirement 2). Behind the Weaver interface, the AOP engine
can hide its platform-specific aspect features, thus providing
the flexibility formulated by requirement 4.

Our goals when developing this system were to:

e define a clean interface of the execution monitor, suit-
able for implementing dynamic weavers on top of it,
while reducing the requirements to the execution moni-
tor. This goal motivates the decision to weave minimal
hooks and not advice code (because weaving minimal
hooks reduces the complexity of the JIT support). The
idea would be for JVM vendors to provide this inter-
face at a low (implementation) cost.

e propose a join-point API similar to the AspectJ model,
to encourage exchanging the AOP engine built on top
of the execution monitor,

e provide an initial evaluation of the performance and
implementation complexity of such a system.



interface JoinPointManager {
Il init
void aopScope(String[] prefixes, boolean openWorld)
/I register join-points
void watchMethodEntry ( Method m, Object aopTag )
void watchMethodEXxit ( Method m, Object aopTag )
void watchFieldAccess ( Field f, Object aopTag )
void watchFieldModification ( Field f, Object aopTag )

/I unregister join-points

(a)

interface Weaver {
/I requested join-points
void onMethodEntry ( JoinPoint jp )
void onMethodExit ( JoinPoint jp )
void onFieldAccess ( JoinPoint jp )
void onFieldModification ( JoinPoint jp )

/I class loads
void onClassLoad(Class cls)

(b)

Figure 2: (a) The JoinPointManager API and (b)
the callback methods called by the execution moni-
tor.

3.6 The execution monitor

Figure 2 contains the core interface of the execution mon-
itor. The execution monitor is integrated with the JVM.
It contains the functionality for activating join-points (used
when a new aspect is added to the system) and the callback
functionality for notifying the AOP engine that a join-point
has been reached (used at run-time).

The execution monitor intercepts the execution in all user
and system classes. Because of security or performance rea-
sons, it is sometimes desirable to restrict the scope of dy-
namic AOP to a subset of all possible classes. The method
aopScope in Figure 2.a can be called at start-up to specify
the interception scope. It receives a list of strings, represent-
ing class-name prefixes, and a boolean parameter openWorld.
If openWorld is true, then all classes, except those prefixed by
one of the prefixes are subject to interception. A false value
implies that interception is performed in a closed world, con-
sisting of the classes that match one of the prefixes.

When a new aspect is added to the system, the AOP en-
gine activates join-points using the watch* methods of the
JoinPointManager. The first parameter is usually a class
member (e.g., field or method) that uniquely identifies the
join-point. The second parameter is the aopTag, a client-
side data object that will be passed to the weaver callback.
The aopTag may contain raw byte-code or data. The seman-
tics of the AOP tag are irrelevant for the execution monitor.
When an activated join-point is reached, the callback man-
ager notifies the AOP engine (each AOP engine implements
the Weaver interface, depicted in Figure 2.b). Notification is
suppressed if the AOP engine is not set up (this is the case
if applications employ the JVM in the traditional mode).

The join-point argument jp contains methods for the in-
spection of local variable values, thread states, return values,

etc. Additionally, the execution monitor guarantees that the
aopTag specified at join-point activation is also part of jp’s
state.

The execution monitor interface has a reflective character
(e.g., local variables are first-class Java entities). However,
the aim of the execution monitor is not that of a full-fledged
Meta-Object Protocol (MOP), which usually exposes much
more program and execution constructs than are needed for
AOP. The reflective character of join points can be hidden
by the AOP engine.

3.7 The AOP engine

When a new aspect is woven, the join-point generator de-
composes an aspect into join-point requests and activates
join-points over the JoinPointManager API. When an active
join-point is reached, the weaver executes a corresponding
advice. The weaver and the join-point generator define the
AOP engine together. By replacing these two components,
one can define new AOP systems on the same JVM.

We explain the general architecture of the AOP engine
by illustrating the actions for weaving an aspect using an
example AOP engine. Then we show the actions taken to
execute the corresponding advice. Our example aspect def-
inition encrypts all bytes-array parameters passed to send-
Bytes-methods. We use pseudo-code to abstract from a par-
ticular AOP dialect:

before methods-with-signature ‘void *.sendBytes(byte[] x)’
do encrypt(x)

To weave this aspect, the join-point generator performs
several sub-tasks, like in Figure 1. First, it inspects all the
classes currently loaded by the JVM and gathers all methods
mi..my that match the signature ‘void *.sendBytes(byte[] x)’
(Figure 1, step 2.1). It then performs static checks, e.g.,
ensures that the method encrypt exists, and that the formal
parameters of encrypt are assignable from a byte-array (step
2.2). Thirdly, it defines the client data to be passed back
by to the weaver when the join-point is actually reached. In
this example, the client data is the method doAdvice, which
will contain an invocation to encrypt. (step 2.3). For all
generated join-point requests (step 2.4), it activates method
entry join-points (step 3). As a value for aopTag it specifies
an array containing the code of doAdvice or, alternatively,
a reference to the memory location where it resides. The
semantic of the aopTag parameter is not important for the
execution monitor, but it will be very useful when calling
back the weaver.

Because of dynamic class loading, aspect weaving is more
complex in practice. When a class is dynamically loaded,
the join-point generator applies the aspects already loaded
in the system to the newly loaded class. It then activates
the join-points belonging to the loaded class.

The example aspect denotes join-points that are all cap-
tured by static points in the original program code (method
entries). In practice, aspects are defined both by static and
by dynamic criteria. It is the responsibility of the AOP
engine to filter out the JoinPoint objects received from the
execution monitor if they do not correspond to the original
aspect definition.

To exemplify these principles, we describe in Figure 3
a simplified implementation of the weaver. Upon entry in
mi..m,, onMethodEntry is called by the execution monitor.
The weaver guarantees that all run-time conditions defining
the reached join-point are met (line 4). If all the dynamic



1a public void foo(int bar)
2.a {

3a
4.a
5.a
6.a
7.a

if (bar<0)
return;
this.count *= 2;
foo (bar-1);
}

1b @ method entry JP
2b iload_1

3b ifge 6

4p o method exit JP
sb return

6b aload_0

7b dup

sb e field access JP
ob getfield #4

106 iconst_2

116 imul

121 o | field mod. JP
13 putfield #4
140 aload_0

1.c // run-time checks

2c CMP JTOC[weaver],0

sc BEQ noCallback

4.c

sc MOV SO, PR[activeThread]
6c CMP SO [aopLock],0

7 BNE noCallback

8.c

9c MOV TO,JTOC]fieldModTags]
10c CMP TO [ARRAY LENGTH],fieldld
11.c BLE noCallback]

12.c

13¢ .../l weaver callback

156 iload_1
160 iconst_1
17,6 isub

186 invokevirtual #5
195 « method exit JP

20b return

(a) (b)

1l4.c ...
15c hoCallback:
16 .../ method body

()

Figure 4: (a) example Java code (b) Translated byte-code (c) Join-Point stub for the field modification.

void onMethodEntry(JoinPoint jp)
{
//'5.1: dynamic filtering
dynamicChecks();

/1 5.2: advice execution
byte[] codeToExecute = jp.aopTag;
executelnternal(codeToExecute);

© 0 N ;O R W N R

—

Figure 3: Simple implementation of a Weaver
method.

checks are passed successfully, the advice can be executed.
On line 7, the weaver extracts the code array stored in the
aopTag. This code corresponds to the inspectStackAndCal-
|IEncrypt method. Finally, the weaver interprets or executes
the method.

The rest of the methods of the Weaver interface can be
implemented analogously. Because of space reasons, we do
not describe here the actions needed for unweaving aspects.

4. THE JIKESEXECUTION MONITOR

Our implementation of the execution monitor is based on
the IBM Jikes Research Virtual Machine [1]. Jikes is written
in Java, and employs a compile-only strategy: all methods,
including those belonging to the JVM itself, are translated
to native code before execution. To implement the AOP sup-
port, the baseline (non-optimizing) compiler of Jikes, version
2.0.2, was modified. This section first presents the enhance-
ment of the JIT compiler, then the additions to the JVM,
and finally the performance results of the AOP-aware JVM.

4.1 JIT compiler enhancements

To make join-points interceptable, the JIT compiler weaves
minimal hooks (henceforth called join-point stub instruc-
tions) at native code locations that correspond to join-points.
This operation is done conditionally, depending on the ini-
tialization parameters passed to aopScope.

Figure 4 illustrates how a join-point stub is generated.
A small Java method is described in Figure 4.a; its byte-
code representation is contained in Figure 4.b. At all places

marked with a bullet, the just-in time compiler generates the
join-point stub code. Figure 4.c is the join-point stub for the
field modification. Before giving the control to the execution
monitor, the join-point stub checks that the AOP engine
exists (lines 1.c-3.c), that the weaver can be called safely
(lines 5.c-7.c) and that the join-point is activated (lines 9.c-
11.c). In many cases, it jumps directly to the beginning of
the method body (label noCallback on line 15.c).

Lines 5.c to 7.c check whether the advice action may trig-
ger AOP recursion. Recursion occurs if, during the exe-
cution of an advice action a1, a join-point triggers a new
advice action, b; which hits a join-point that executes a1
once again. AOP recursion is harder to understand and use
than classical recursion. One join-point may trigger several
advice actions ai..a,; the same advice may be triggered by
different join-points. Moreover, in dynamic AOP, the effects
of aspect-oriented recursion depend on additional run-time
parameters, e.g., the point in time when an aspect was added
to system, or the set of currently woven aspects. Our ap-
proach is to lock the join-points on a per-thread basis during
advice execution. This effectively disables AOP recursion.
A less restrictive, but more costly approach, would be to
detect recursion cycles for each join-point dispatch.

For obvious reasons, the run-time checks must be very
efficient. For the large majority of join-points, an overhead
of 2 to 6 machine instructions is expected. If the join-point
“belongs” to an aspect, the callback method of the weaver
is called. The callback is expensive: all data characterizing
the join-point (e.g., local environment, the aopTag specified
at join-point registration) is packed into a JoinPoint object
which is then passed as a parameter to the weaver.

4.2 JVM Enhancements

The generation of join-point stubs changes a number of
properties on which the execution of the VM relies. For con-
sistency and efficiency reasons, the integration of the execu-
tion monitor with several components of the JVM is needed.

One example is the division of a method’s body into basic
blocks. A basic block is a code sequence in which the stack
layout remains unchanged. Basic blocks are used by the
garbage collector to inspect the stack and collect object ref-
erences. When adding join-point stubs, a method call may



[ Benchmark Relative overhead |

Java Grande benchmark suite
LUFact:Kernel 103.15 %
Crypt:Kernel 103.24 %
SOR:Kernel 98.74 %
SparseMatmult:Kernel  100.23 %
Average 10144 %

SPECjvm 98 benchmark suite
check 103.04 %
jess 110.19 %
db 105.17 %
jack 107.84 %
javac 113.51 %
Average 10795 %

Table 1: Relative overhead with AOP support for
method boundaries, field sets, and field gets.

occur at a location where no basic block boundary was de-
tected during byte-code analysis. As consequence, JIT-level
AOP implies the additional cost of adapting the byte-code
analysis component.

Another problem that we face is making the stack lay-
out visible to the join-point object passed as a parameter
to Weaver. This is needed because the JoinPoint interface
allows gathering information of the local environment (e.g.,
local variables).

In related approaches [10], it was observed that the gener-
ation of reflective information (here, the join-point object)
has an important impact on performance and on the fre-
quency of garbage collection. To minimize this impact, the
internal thread data structure can be enhanced to contain
a pool of join-point objects. When calling back the AOP
engine, the generation of new objects is thus avoided. In
general, all information related to join-points must be as
close as possible to the internal representation in the JVM.

4.3 JVM performance

The integration of the execution monitor implies minor
changes to the JVM classes (600 lines of code) plus an ad-
ditional module of approximately 1000 lines.

We first compare the original JVM with the JVM con-
taining the execution monitor. In this experiment, the ex-
ecution monitor is not activated. The results measure the
performance loss incurred by the mere existence of the AOP
support and join-point stubs. All experiments were per-
formed on Linux, running on a Pentium IIT 500MHz double
processor machine with 512 MBytes RAM.

Table 1 summarizes the relative overhead of the AOP en-
hanced JVM for the Java Grande [7] and SPECjvm [17]
benchmarks. The AOP support leads to a slowdown of av-
eragely 1.5% in Java Grande tests. An average slowdown of
8% is observed in the SPECjvm tests.

To measure the code size variation incurred by various
join-point stubs, we compare the size of the native code
generated by the baseline compiler with and without AOP
support. The code belongs to a number of 2593 methods
in the core libraries of the JVM. Table 2 shows the relative
code-size increases, as a function of the join-point type.

The unmodified baseline compiler translates a method in
310ps. The aop-baseline compiler takes 380ps for compil-
ing a method and produces code which is twice as large

[ Type of join-points New code size |

Method entry: 126.3 %
Method exit: 124.9 %
Field modification: 111.8 %
Field access: 61.1 %
Total: 233.9 %

Table 2: Relative increase of the code size due to
weaving of join-point stubs.

(Table 2). The slowdown of the compilation depends heav-
ily on the aspect scope specified at initialization. For each
translation of a method m declared in class C, the com-
piler verifies that C' is in the aspect scope. For an aspect
scope which is defined by a large list of package prefixes, the
compilation time grows accordingly.

To measure the efficiency of the execution monitor, we
performed a number of micro-measurements. For a micro-
measurement, we calculate the time needed to execute a
simple operation (e.g., an empty method call, a field set, a
field get). The example below illustrates how we measure
the cost of an empty method call:

1 for(i=0;i<100000;i++); // t1: loop time
2 for(i=0;i<100000;i++) tstMethod(); // t2: loop + invokevirtual
3 [/ time needed for an meth. invocation: (t2 - t1)/100000

When doing the same measurements with an activated
join-point (e.g., before the execution of tstMethod) the time
increases accordingly. This increase indicates how much
time it is spent in the execution monitor and is a good
indicator of the AOP system efficiency. We use the com-
mon technique of a trivial weaver implementation with “do-
nothing” operations for each type of join-point. We repeat
the same measurement until the standard deviation is less
than 1%[14].

The micro-measurement results are summarized in Table 3.
Each row contains the average time needed to execute a
byte-code instruction, under various configurations of the
AOP support.

On the first column we list the four basic operations we
have evaluated. The second column represents the time
needed to execute an instruction when the execution moni-
tor has no active join-points. The third column contains the
cost of executing an operation for which a join-point was reg-
istered and then locked. Recall that join-points are locked
to avoid AOP recursion, hence the third column shows the
cost of reaching a join-point during an advice action.

The fourth column contains the execution time of a byte-
code with an activated join-point. An activated, unlocked
join-point always results in a call to the weaver component.
In our case, the weaver executes a do-nothing operation.
The cost is significant: 500ns/instruction, roughly the time
needed to execute an invokeinterface instruction. For com-
parison, a do-nothing AspectJ (version 1.0.3) advice, com-
piled into the test increases the execution time of an instruc-
tion by roughly 100ns (column 5).

Finally, an important parameter is the cost of accessing
objects in the local environment of a join-point using the
JoinPoint interface. The largest cost (1110 ns) is for retriev-
ing local integers. For retrieving the “this” object 380ns are
needed, while one of the actual parameters of type Object
can be accessed in 460 ns. The difference between retrieving



Instruction No call to weaver No call to weaver Call to empty weaver AspectJ call to

type because join-point is | because join-point is | method because of an an empty advice
not activated activated but locked | active, unlocked join-point

getfield 12.9 ns 17.7 ns 541.3 ns 108.3 ns

putfield 12.3 ns 19.5 ns 548.0 ns 119.7 ns

invokevirtual 39.0 ns 47.9 ns 513.9 ns 201.3 ns

invokeinterface 662.6 ns 670.1 ns 1121 ns 850.1 ns

Table 3: Join point costs on the enhanced JVM (columns 2-5) and on the unchanged JVM with AspectJ and

a do-nothing advice.

objects and integers is simple to explain: the JoinPoint in-
terface does not return primitive values (e.g., int) but wrap-
per objects (e.g., java.lang.Integer). The rest of the time is
spent to locate the local variable in the current stack frame.
The cost of accessing parameters has been reported to be
significant in related approaches [3] (also based on minimal
hooks). In our architecture, the cost of retrieving variables
from the stack depends on the implementation of the AOP
engine. One AOP system may be eager, and always retrieve
all visible variables from the stack when reaching a join-
point. Another one may be lazy, and retrieve the variables
only when the advice code action needs them. Which option
is better still needs to be explored.

4.4 Evaluation of the execution monitor

The execution monitor prototype gives us some important
information about how this architecture fits the initial re-
quirements and conveys a first indication of the performance
that can be achieved by a JIT-based weaver.

If a 5% to 10% slowdown is acceptable for applications
that need dynamic AOP, then the requirement 1 is well ad-
dressed with this model. For example, in Java Grande tests,
the enhanced JVM leads to a small slowdown, of only 1.5%,
while the SPECjvm tests show an average of overhead 8%.
The difference is probably due to the fact that Java Grande
applications are computationally intensive and contain fewer
join-points than the SPECjvm tests. The performance over-
head incurred for join-points reached during the control flow
of an advice cost less than 9ns.

The largest cost is incurred by active join-points: the noti-
fication of the AOP engine is roughly equivalent to the cost
of an invokeinterface call (0.5 ps). A join-pointed instruc-
tion is 1.3 to 5 times slower than a static implementation
based on AspectJ. A higher run-time cost than static AOP
lies in the nature of dynamic AOP. As suggested by our
initial performance assessment, the execution monitor com-
pares favorably to other approaches. For example, our first
prototype [16], based on the debugger interface of the JVM,
needs 101.1us for an upcall before an invokevirtual and 98.3
ps for an upcall before an invokeinterface instruction. This
corresponds to a relative overhead between 16 and 106 times
larger than the overhead incurred by the JIT execution mon-
itor for a similar operation.

The implementation cost of an execution monitor is small
(1600 loc). The small implementation cost is also due to
the decision to implement the system using the baseline JIT
compiler. An implementation based on the optimizing com-
piler is more difficult, because the existence of join-points
may prevent certain compiler optimizations. This may lead
to a larger impact on the execution time of applications.
In both cases, an efficient execution monitor requires JVM-

specific knowledge, since it has to be integrated with core
modules of the JVM (e.g., the garbage collector, internal
thread structures).

5. THE AOPENGINE WITH PROSE
5.1 PROSE

To check the feasibility of our model, we wanted to eval-
uate the cost of a complete AOP system. For this purpose,
we adapted PROSE [16] to use the execution monitor and
join-point API. PROSE consists of a set of libraries. As-
pects in PROSE are first-class Java entities, and all related
constructs are expressed using the base language, Java.

The use of PROSE is best shown by means of an exam-
ple. A PROSE aspect for implementing access control in
all methods with names matching “m*’ and belonging to
classes named ServiceB is depicted in Figure 5. All PROSE
aspects extend the Aspect base class (line 1). An aspect
object contains one or several crosscut objects. A crosscut
object® defines an advice and describes the join-points where
the advice should be executed. In Figure 5, there is just one
crosscut, corresponding to the accCtrl instance field (line
3); the advice action is defined on the lines 6-9. The number
and types of join-points defined by accCtrl depend on the
signature of the advice method and on a specializer object
attached to the crosscut (lines 12-14). The signature (line 6)
restricts the execution of the advice to methods declared in
classes of type ServiceB. The specializer further restricts the
set of join-points to entries in methods whose name matches
the regular expression "m.*". Specializers are composable
by means of NOT,AND, respectively OR, methods. They
are used in a way that is similar to that of pointcut desig-
nators [22] in Aspect].

We adapted the initial implementation of PROSE [16] to
use the execution monitor interface. Since aspects are first-
class Java entities, no parsing of aspects is implemented by
PROSE'’s join-point generator. Nevertheless, the other sub-
tasks of the join-point generator component are present:
static checks verify the compatibility of the advice formal
parameters with those of various intercepted methods; and
join-points are generated and then activated in the Join-
PointManager.

PROSE also defines its own Weaver implementation. The
PROSE Weaver performs dynamic filtering of join-points de-
pending on the specializers associated with a crosscut object.
When calling an advice method like ANYMETHOD (line 6)
PROSE converts the actual parameters of the intercepted
method to types required by the advice method interface
(e.g., REST). Lastly, it calls the advice method.

Tn this context, a crosscut is a programmatic construct
roughly equivalent to the advice construct in AspectJ.



[ Invoke type Parameters Jikes/AspectJ  Jikes/PROSE |
invokeinterface (Object,Object) 969 ns 2691 ns
invokeinterface 0 528 ns 2180 ns
invokevirtual (Object,Object) 203 ns 1746 ns
invokevirtual 0 201 ns 1783 ns
sync invokevirtual (Object,Object) 483 ns 2020 ns
sync invokevirtual () 471 ns 1981 ns

Table 4: Micro-benchmark results with PROSE and AspectJ.

1 class SecurityAspect extends Aspect
> {
3 Crosscut accCtrl = new MethodCut()
s {
5 /I advice method: ServiceB.*(..) && ...
6 public void ANYMETHOD(ServiceB thisO, REST anyp)
7
8 /I check access SeviceB.*
9
10 Il ...&& before m*(..) && instanceof(Remote)
11 { setSpecializer(
12 (MethodS.BEFORE) .AND
13 (MethodS.named("'m.*")) .AND
14 (TargetS.inSubclass(Remote.class)) );
15 }
6}
17 }

Figure 5: A PROSE aspect for weaving location-
specific access control at the start of methods de-
fined in ServiceB.

One important issue is the support for atomic weaving
(requirement 2). Atomic weaving corresponds to the acti-
vation of join-points matched by an aspect A in one single
step. The PROSE engine provides this support as follows.
It activates join-points one by one (non-atomically) but sets
a flag in the A’s advice method that makes its execution
a do-nothing operation. As more join-points are activated,
A’s advice is actually invoked, but it has no visible effect
at run-time. Once all the join-points corresponding to A’s
advice have been properly activated in the execution moni-
tor, the engine unsets the flag (field sets are atomic in Java).
From this point on, reaching a join-point matched by A is
followed by the execution of the actual advice.

5.2 Evaluation of the AOP Engine

We repeated a number of micro-measurements done for
the execution monitor, this time with the complete AOP
system (the PROSE AOP engine running on top of the
Jikes execution monitor). Here, too, we measure the cost
of do-nothing advices around method invocations. Table 4
summarizes the results. Each line contains the total time
needed to execute a method call plus an additional do-
nothing advice on method entry. The advices were woven
statically using AspectJ (column 3) and dynamically using
PROSE/Jikes (column 4).

The cost of executing a do-nothing PROSE advice is now
2.5 to 8.5 times higher than that of executing a static ad-
vice. It is fair to say that PROSE’s AOP engine induces a
large overhead compared to AspectJ. The complete weaver
(execution monitor plus AOP engine) is significantly faster
than the previous version of PROSE, based on the debugger
interface of the JVM. Thus, the relative overhead at method

boundaries is between 16 and 151 times smaller than in the
previous version of PROSE.

We performed an additional set of micro-measurements to
identify the difference between our JIT-based AOP system
and a load-time based AOP system. Performance measure-
ments published on [13] and Handi-Wrap [3] indicate that
there are important performance variations among load-time
weavers (e.g., Handi-Wrap is significantly faster than JAC).
With JAC being publicly available, we chose to micro-measure
the relative overhead induced by the two platforms (ours and
JAC). By relative overhead we mean the fraction

tsimple_operation+advice_action/tsimple_operation

We first compared the Jikes execution monitor and JAC
when executing a “do-nothing” advice action before a known
method. The relative overhead of the execution monitor
for virtual (interface) calls was 780 (10873) smaller than
JACs. This is however an unfair comparison, since we are
comparing the support for the join-point model with a whole
AOP System.

A more relevant comparison is between “do-nothing” ad-
vices in PROSE system and int the JAC system. In this
case, the relative overhead of our system for a virtual (in-
terface) method call is 233 (4180) times smaller than the
one incurred by JAC. For these measurements we use the
micro-measurement methodology explained earlier [14].

This difference is an important information, even with
the significant performance differences among various byte-
code weavers. It must be noted that JAC uses a different
approach, with a more powerful join-point model which al-
lows per-object advices. This join-point model may lead to
improved performance in more specialized cases. However,
the exact cause of the costs involved by the JAC join-point
model and a careful analysis of the difference between the
two systems is beyond the scope of this paper and will be
addressed as part of future work.

Note that over 75% of the overhead time is spent in the
PROSE AOP engine, the rest being spent in the execution
monitor. This means that an important part of the current
cost can be eliminated by a more efficient AOP engine. For
example, employing an advice calling schema similar to [4]
or [3] (which pre-compiles the advice code, as opposed to
PROSE) would lead to performance improvements.

Providing atomic weaving proved to be a fairly simple
task in PROSE. We believe that the same technique can be
applied to other AOP engines as well.

6. DEPLOYING THE AOP SYSTEM

We have evaluated the prototype in terms of complexity
and performance, but not shown how the system can be used
in practice. This is best illustrated by the deployment of the
AOP system in a spontaneous container [15].



(@

Figure 6: (a) Control flow during a remote call from A to B and (b) adaptation

check access
rights (3)

detach A’s
public key (2)

attach A’s
public key (1)

(b)

of node B with middleware

specific features and (c) execution points enhanced by the security aspects.

A sso0

ms

500 2

450 9
ﬁf

400 &

350 P
8 Jini

g
300 nﬂﬂ ® Jini & Aspect
250 i vV Jini & Aspect &|
u ACL

200 ad

150 2
100

50

O TTT I T I T T I T T T T T TITIITTTT
123456789111111111122222222223
012345678901234567890

-

#clients

(a)

inv/sec

35 g 0 Jini
30 < Jini & Aspect
vV Jini & Aspect&
7]
25 ACL
20 ]
15 -
10
5
0 TTTTTTTT T TTI T T T T T I T T T I T
123456789111111111122222222223
012345678901234567890
#clients

(b)

Figure 7: (a) Throughput in inv/s and (b) response time (ms) for remote invocations.

6.1 Basicsof spontaneous containers

‘We consider the application scenario mentioned in the mo-
tivation section in which a spontaneous container provides
dynamic middleware services to all devices on a fair-trade
ground. A spontaneous container imposes two basic require-
ments to individual computing devices (nodes): First, each
node exports a number of services, which can be remotely
invoked from other nodes. Second, each node contains an
activated dynamic AOP engine. Nodes receive aspects from
a base station (the spontaneous container) and weave them
at run-time using their AOP engine. In this experiment,
the spontaneous container distributes aspects thus impos-
ing a network-specific security policy to all nodes of a local
network. We assume the aspects sent by the spontaneous
container model access control in remote method invocations
between any two nodes.

Figure 6.a illustrates the control flow of a remote service
invocation between nodes A and B. On As node, the thread
t calls an RMI stub (light gray). An RMI skeleton (dark

gray) on B’s site unmarshals the parameters and calls the
actual implementation of the service method mi. After m;
has terminated the computation, similar steps are needed
for transporting the return values form B to A. The return
values are used for further computations in ¢.

Figure 6.c illustrates the same interaction, once the spon-
taneous container has sent aspects to both nodes A and B.
After aspect weaving, the marshaling of parameters is inter-
cepted on the callees site. At this point, the advice function-
ality adds A’s public key to the list of actual parameters (1).
On B’s site, the unmarshaling is intercepted and the public
key is extracted by an appropriate advice (2). Before the
execution starts in m1, A’s access rights are checked (3). If
the caller does not have the necessary rights, the execution
is abruptly terminated.

6.2 Application performance

The AOP engine is a sub-component of a larger sponta-
neous container prototype [15]. The experiments describe



the behavior of a system in which a service B is remotely
called by a variable number of clients A;..A3p (the clients
work concurrently). For all experiments, we have grouped
the client applications on one host of a local area network;
the server runs on a different machine. Each client A; calls
the server 300 times. A remote call accepts a query image
(40x40 pixels) as a parameter and returns the most similar
image from the local database of images. The initial image
database contains 60 images.

In all experiments, we measured two variables. The re-
sponse time observed by each client is a good indicator of
B’s quality of service. The throughput (average number of
invocations per second) observed by B indicates the scalabil-
ity of the system. In total, we performed three experiments.

The first measured response time and throughput in a
typical (non-adapted) service community. The second mea-
sured response time and throughput after the spontaneous
container has woven a “do-nothing” aspect in each node.
The do-nothing aspect intercepts all necessary calls, both in
the RMI stubs and before the execution of m;. This test
characterizes the impact of the adaptation mechanism. The
third experiment showed how the system behaves when the
woven aspects implements key transfer functionality plus
an access control check for each remote method invocation.
Figure 7 summarizes the results of the experiments.

The performance of the dynamic AOP support translates
to a barely observable difference in response time or through-
put, hereby meeting the application requirements.

7. CONCLUSION

In this paper we have presented a modular and flexible ar-
chitecture for dynamic AOP. The support for dynamic AOP
is provided by the just-in-time compiler and exports a simple
join-point API to the actual AOP system (the AOP engine);
the AOP engine can be treated as an exchangeable module.
The Just-In-Time approach strikes a reasonable balance be-
tween implementation complexity and performance: when
no aspects are woven into a JVM, a relatively small over-
head of 8% of the execution time can be expected for weav-
ing method boundaries, field sets and gets. When aspects
are woven, the cost of advice invocations is equivalent to an
invokeinterface call. The AOP support can be completely
disabled if needed; this feature, plus the reduced implemen-
tation complexity makes this approach viable in any JVM
implementation. If this support were integrated with all
JVMs, several challenging applications such as hot-fixes and
adaptations in mobile computing would largely benefit from
it. We have shown the trade-offs implied by such an archi-
tecture and actually described a prototype that implements
a form of run-time adaptation for mobile services. As an
open source project, PROSE is open for contributions, and
can obtained from http://prose.ehtz.ch.

8. REFERENCES

[1] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke,
P. Cheng, J.-D. Choi, A. Cocchi, S. J. Fink, D. Grove,
M. Hind, S. F. Hummel, D. Lieber, V. Litvinov, M. F.
Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano,
J. C. Shepherd, S. E. Smith, V. C. Sreedhar, H. Srinivasan,
and J. Whaley. The Jalapefio virtual machine. IBM
Systems Journal, 39(1):211-238, 2000.

[2] D. Arregui, F. Pacull, and J. Willamowski. Rule-Based
Transactional Object Migration over a Reflective
Middleware. In Middleware 2001: IFIP/ACM Intl. Conf.

[10]

[11]

[12]

(13]

on Distributed Systems Platforms, volume 2218 of LNCS,
pages 179-196, 2001.

J. Baker and W. Hsieh. Runtime Aspect Weaving Through
Metaprogramming. In st Intl. Conf. on Aspect-Oriented
Software Development, Enschede, The Netherlands, pages
86—95, Apr. 2002.

P. Bothner. Kawa — Compiling Dynamic Languages to the
Java VM. In Proc. of the Usenixz Technical Conference,
New Orleans, June 1998.

M. Clarke, G. S. Blair, G. Coulson, and N. Parlavantzas.
An Efficient Component Model for the Construction of
Adaptive Middleware. In Middleware 2001: IFIP/ACM
Intl. Conf. on Distributed Systems Platforms, volume 2218
of LNCS, pages 160-178, 2001.

T. Elrad, R. E. Filman, and A. Bader. Aspect-oriented
programming: Introduction. Communications of the ACM,
44(10):29-32, 2001.

J. G. Forum. The Java Grande Forum benchmark suite.
Accessible from http://www.javagrande.org.

G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,

C. Lopes, J. Loingtier, and J. Irwin. Aspect-Oriented
Programming. In M. Aksit and S. Matsuoka, editors, In
Proc. of ECOOP’97 Jyvdskyld, Finland, volume 1241 of
LNCS, pages 220-242. Springer-Verlag, New York, NY,
June 1997.

S. Microsystems. Enterprise Java Beans Specification,
Version 2.0, Aug. 2001.

A. Oliva and L. Buzato. The design and implementation of
Guarana. In Proc. of the 5th USENIX Conf. on
Object-Oriented Technologies and Systems, pages 203—-216.
The USENIX Association, 1999.

D. Orleans and K. Lieberherr. DJ: Dynamic Adaptive
Programming in Java. In Reflection 2001: Meta-level
Architectures and Separation of Crosscutting Concerns,
Kyoto, Japan, September 2001. Springer Verlag.

K. Ostermann. Dynamically Composable Collaborations
with Delegation Layers. In Proc. of ECOOP’2002, Malaga,
Spain, 2002. Springer.

R. Pawlak, L. Seinturier, L. Duchien, and G. Florin. JAC:
A Flexible Solution for Aspect-Oriented Programming in
Java. In Reflection 2001: Meta-level Architectures and
Separation of Crosscutting Concerns, pages 1-24, Kyoto,
Japan, September 2001. Springer Verlag.

A. Popovici. Measurement Results and Methodology for
AOSDO3.
http://prose.ethz.ch/Wiki.jsp?page=Measurements.

A. Popovici and G. Alonso. Ad-Hoc Transactions for
Mobile Sevices. In Proc. of the 3rd VLDB Intl. Workshop
on Transactions and Electronic Services (TES ’02), Hong
Kong, China, Aug. 2002.

A. Popovici, T. Gross, and G. Alonso. Dynamic Weaving
for Aspect Oriented Programming. In 1st Intl. Conf. on
Aspect-Oriented Software Development, Enschede, The
Netherlands, Apr. 2002.

Spec - The Standard Performance Evaluation Corporation.
SPECjvm. Web access http://www.spec.org/osg/jvm98/.
E. Stolte and G. Alonso. Efficient Exploration of Large
Scientific Databases. In Proc. of the 28th Intl. Conf. on
Very Large DataBases (VLDB), Hong Kong,China, Aug
2002.

Sun Microsystems. The Java Security Model.
http://java.sun.com/.

P. Tarr, H. Ossher, W. Harrison, and S. Sutton. N Degrees
of Separation: Multi-dimensional Separation of Concerns.
In 1999 Intl. Conf. on Software Engineering, pages
107-119, Los Angeles, CA, USA, 1999.

E. Truyen, W. Joosen, and P. Verbaeten. Consistency
Management in the presence of Simultaneous
Client-Specific Views. In Intl. Conf. on Software
Maintenance, Montreal, Canada, 2002.

Xerox Corporation. The AspectJ Programming Guide.
Online Documentation, 2002. http://www.aspectj.org/.



