
Processing Top N and Bottom N Queries

Michael J� Carey

IBM Almaden Research Center

San Jose� CA �����

Donald Kossmann

University of Passau

�	�
� Passau� Germany

� Introduction

In certain application areas� such as those related to decision support or multimedia data� users wish to
ask so�called top N and bottom N queries� these are queries that request a certain number of answers
�N� having the highest or lowest values for some attribute� expression� or function� For example�
rather than �nding all publications on a certain topic� a researcher may want to retrieve the ten most
heavily referenced papers on the topic at hand� A politician planning his or her next campaign might
be interested in discovering the average salary of the wealthiest ten percent of the voters in a given
district� Parents of a young child might want to �nd �ve mystery books that least well match the terms
	crime
 and 	murder�
 These examples illustrate a variety of situations in which top N and bottom N

queries are meaningful� In addition� they demonstrate the fact that such queries can involve standard
relational data as well as text or other multimedia data�

To date� the SQL standard does not include statements that allow users to pose such top N and
bottom N queries� There have� however� been several proposals in the literature �e�g�� �KS�
� CG���
CK����� and database system vendors are beginning to extend their SQL dialects and query interfaces
in order to support such queries� Given the obvious need and this growing interest� this paper addresses
the question of how top N and bottom N queries can be processed e�ciently� moreover� we address
the question of how such support can be provided as a natural extension of existing relational query
processing architectures� In a nutshell� our goal is to evaluate such queries with as little wasted work

as possible� That is� if a query asks for the �� most popular publications� we want to avoid work to
process� say� the ��th� ��th� or ��th most popular publications�

We will begin by presenting a series of situations in which a traditional DBMS� i�e�� one without
integrated support for top N and bottom N queries� would end up wasting work� We then show how
such a traditional DBMS could be extended � with relatively little e�ort� in fact � in order to avoid such
wasted work and thereby achieve orders�of�magnitude improvements in many cases� Our goal here is
to drive home the point that database systems must be extended in order to process top N and bottom

N queries e�ciently and to brie�y touch upon each of the required extensions� a detailed description
of our approach� as well as a performance evaluation� can be found in �CK���� We will focus here on
SQL and relational databases� using relational queries as examples and citing some measurements from
a relational DBMS platform to illustrate the important performance gains that can be achieved� we
note� however� that most of the e�ects and techniques discussed in this paper are applicable to any
kind of database system�

Copyright ���� IEEE� Personal use of this material is permitted� However� permission to reprint�republish this ma�
terial for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers
or lists� or to reuse any copyrighted component of this work in other works must be obtained from the IEEE�
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

�



� Forms of Wasted Work

In this section� we discuss �ve example queries that illustrate ways in which a traditional DBMS�
which does not have built�in support for top N and bottom N queries� will end up wasting work
when faced with applications that require this type of query support� These queries illustrate di�erent
forms of wasted work that occur in a traditional DBMS� We also explain how an enhanced system
would be able to avoid the wasted work in each case� In addition� we cite measurements that we
obtained by 	simulating
 our proposed system enhancements using IBM�s DB� for Common Servers
DBMS product� the proposed enhancements were simulated by adding predicates to the test queries
such that DB� chose the same or equivalent plans that would be used by an enhanced system� The
measurements clearly show that orders�of�magnitude performance improvements can be achieved by
enhancing a DBMS with explicit support for top N and bottom N queries��

To specify the example queries� we will use the syntax that we proposed in �CK���� that is� the
queries will be standard SQL queries with an additional �non�standard� STOP AFTER clause to specify
the number of requested answers �i�e�� N�� In the following� we will �rst de�ne the test database and
then discuss the �ve examples�

��� The Test Database

To demonstrate the di�erent forms of wasted work� we will use a simple database that contains infor�
mation about a company�s employees� departments� and employees� travel expense accounts �TEAs��
Speci�cally� the database will consist of the following three tables�

Emp�empId� name� salary� works in� teaNo�
Dept�dno� name� budget� function� description�
TEA�accountNo� expenses� comments�

Here� the underlined columns represent the primary keys of the tables� and the italicized columns
represent foreign keys� In addition to key and referential integrity constraints� we assume that the
database has constraints to enforce the fact that every employee works in some department and that
every employee has a travel expense account� i�e�� we assume that there are NOT NULL constraints in
addition to foreign key constraints on the columns Emp�works in and Emp�teaNo�

For our performance experiments� we generated synthetic Emp� Dept� and TEA tuples� For the
measurements cited here� the Emp� Dept� and TEA tables had ������ tuples of ��� bytes each� i�e��
all three of these tables contained �� MB of data� Furthermore� we generated �clustered� primary
indexes on Emp�empId� Dept�dno� and TEA�accountNo� and unless the text says otherwise� there was
a secondary �and unclustered� index available on Emp�salary in each experiment� All of the indexes
are B� trees� so they can be used in order to evaluate range and join predicates as well as reading data
out of the corresponding tables in indexed�column order�

��� Example �� Shipping Query Results

Our �rst example demonstrates the simplest form of wasted work� This form arises when the run�
time system of the DBMS does not know how many tuples are desired by the application� in the
absence of SQL support for top N or bottom N queries� the desired result�limiting e�ect will end
up being implemented� e�g�� simply by closing a cursor early at the application level� Speci�cally� this
example addresses the impact of a feature called row blocking � which is implemented in most commercial
database systems in order to reduce the overhead of shipping query results from the DBMS back to an

�Details of the experiments that produced the results that we cite here can be found in �CK����

�



application process� Using row blocking� the DBMS allocates a certain number of bu�ers for a given
query� It �lls these bu�ers with tuples of the query result and then ships the whole block of result
tuples to the application process when the bu�ers become full� The application process reads the query
results in a tuple�at�a�time fashion using� e�g�� the SQL cursor interface� Once all the tuples of the �rst
block have been consumed by the application� the DBMS produces more query results and ships the
next block of result tuples to the application process�

Row blocking is a simple yet important mechanism for e�cient client�server query processing� The
alternative� returning query results one tuple at a time� can become prohibitively expensive when a
query result is large� For top N and bottom N queries� however� row blocking can be the cause of wasted
work if the DBMS does not know the value of N and must therefore assume that the application will
consume all of the tuples that satisfy a given query predicate� We will demonstrate this e�ect with the
following example query� which asks for the �rst one hundred tuples of the Emp table �i�e�� for the ���
Emps with the smallest id values��

SELECT �

FROM Emp e

ORDER BY e�id

STOP AFTER ���

If the DBMS�s result bu�ers have room for 
�� tuples� a traditional DBMS would respond to this
query by producing the �rst 
�� Emps �using the primary index on Emp�id� and shipping them to the
application process� In contrast� an enhanced DBMS would know that the application only wants ���
tuples� and it would therefore only produce ��� Emp tuples and send them as a block to the application
process� In our experiments� the enhanced approach outperformed the traditional approach by a factor
of four in this case�

Traditional Enhanced
�����s �����s

Two forms of wasted work are causing this performance di�erence � the traditional DBMS fetches too
many tuples out of the Emp table� and it ships too much data back to the application process� both
of which are unnecessary costs from the application�s perspective� Obviously� the advantages of the
enhanced approach become even more pronounced in this example when fewer tuples are requested by
the application� the same is true of the other examples presented in this section as well�

��� Example �� Access Path Selection

The second example demonstrates a basic reason why the query optimizer of a database system needs
to know the value of N when optimizing a top N or bottom N query� The query in this example asks
for the ��� best paid Emps�

SELECT �

FROM Emp e

ORDER BY e�salary DESC

STOP AFTER ���

Assuming that there is a non�clustered index on Emp�salary� the best way to execute this query
would be to use this index to �nd the ��� best paid Emps and then fetch them from the Emp table�
Unfortunately� without the knowledge that only ��� Emps are being requested �i�e�� assuming that all
Emps must be returned in salary order�� a traditional query optimizer would choose a di�erent plan�
it would choose a plan with a table scan followed by a sort operator� as the use of an unclustered index

�



would have an extremely high estimated cost for disk seeks if the whole Emp table with ������ tuples is
assumed to be read� Our experiments showed that� for this example� a stop�enhanced query optimizer
would outperform a traditional optimizer by over two orders of magnitude�

Traditional Enhanced
���	

s ����	s

��� Example �� Cost of Sorting

The third example shows that an enhanced database system requires new� specialized query operators
in order to process certain kinds of top N and bottom N queries e�ciently� Let us reconsider the
query from the previous subsection� which asked for the ��� best paid Emps� Let us now assume that
there is no index available on Emp�salary� A traditional system would again execute this query with
a conventional sort operator� However� a better approach to �nd and sort only the ��� best paid Emps

is to build a priority heap in main memory �Knu���� The �rst ��� Emps would be inserted into that
priority heap and� after that� every Emp tuple would be inspected to see if it has higher salary than the
bottom Emp in the heap� If so� the tuple would be inserted into the heap� thereby replacing the current
bottom Emp of the heap� if not� the tuple would simply be discarded because it cannot possibly be part
of the requested query result� Our experiments showed that this stop�enhanced approach to executing
this example query outperforms the traditional approach by a factor of three because it avoids the
wasted work of sorting �many� tuples which are not part of the desired query result�

Traditional Enhanced
���	

s �����s

��� Example �� Pipelined Join Methods

The fourth example again demonstrates a potential improvement that can be achieved by enhancing the
query optimizer of a traditional DBMS� This example shows that many top N and bottom N queries
are best executed using a pipelined query plan� speci�cally� this example shows that a nested�loop index
join can be a very e�cient method to evaluate a multi�table top N and bottom N query� The following
example query requests the employee and department information for the ��� best paid Emps�

SELECT �

FROM Emp e� Dept d

WHERE e�works in � d�id

ORDER BY e�salary DESC

STOP AFTER ���

If both tables are large� the optimizer of a traditional system� which is oblivious to the desired �nal
result cardinality� would likely choose a sort�merge or hybrid�hash join in order to evaluate this query�
In contrast� an enhanced system would most likely generate a plan in which the Emp tuples are produced
in order �using the Emp�salary index if there is one� or a sort�based operator if not� and then join one
Emp tuple with the Dept table at a time using the index nested�loops method until ��� Emp tuples have
quali�ed� Our experiments show that such an enhanced system would outperform a traditional system
by two orders of magnitude in this case if there is an index available on Emp�salary�

Traditional Enhanced
�����	s �����s

�



��� Example �� Join Queries With No Good Pipelined Plan

For some top N and bottom N queries� no good pipelined query plan exists� Examples include queries
with large N � where an index nested�loop join becomes too expensive for producing all N results�
Another example is a multi�way join query where not all joins should be carried out in a pipelined
fashion� e�g�� because of excessive main�memory consumption� or because the query optimizer chooses
a join order with a bushy query plan� In such situations� it is important to reduce the cardinality
of intermediate results as early as possible in order to reduce the cost of subsequent expensive �e�g��
join� operators� This is illustrated by the following example� which requests the department and travel
expense information for the ��� highest paid employees�

SELECT �

FROM Emp e� Dept d� TEA t

WHERE e�works in � d�id AND t�teaNo � t�accountNo

ORDER BY e�salary DESC

STOP AFTER ���

Given the facts �implied by the database�s integrity constraints� that every Emp works in a department
and has a travel account� an e�cient way to execute this query is to identify the ��� best paid Emps

�rst and then carry out the joins in order to �nd out the department and travel information for only
these ��� tuples� A traditional system� however� would most probably carry out the joins �rst� using
the whole Emp table� identifying the ��� best paid Emps with their Dept and TEA information only at
the end �i�e�� up in the application program�� As a result� our experiments showed that a traditional
system would be outperformed by an order of magnitude by a stop�enhanced system in this example�

Traditional Enhanced
����
��s 	�
��s

� Extending a DBMS

In this section� we will describe how a traditional relational DBMS can be extended to provide good
performance for all �ve of the examples from the previous section� Our approach is to use existing
components as much as possible to process top N and bottom N queries� only adding new stop�speci�c
code when absolutely necessary� As a result� the required changes are moderate� making it possible to
implement and integrate the changes with a modest amount of e�ort� the handling of regular queries
�i�e�� non�top�bottom queries� is unchanged� After describing our approach� we will brie�y discuss
how some degree of support for top N and bottom N queries has recently been integrated into certain
commercial database systems�

��� Our Approach

In the following� we list and brie�y sketch out the changes that we propose in order to extend a
traditional �relational� DBMS to handle top N and bottom N queries� A much more detailed description
of these extensions and their impact can be found in �CK����

SQL and Parser As mentioned earlier� we propose extending the syntax of SQL to include a STOP

AFTER N clause as an optional su�x to SQL�s SELECT statement� this allows users to express top N and
bottom N queries� Just as any SELECT statement can be used as part of the de�nition of a subquery or a
view� we allow a STOP AFTER clause �and a corresponding ORDER BY clause� to be used in the de�nition
of subqueries and�or views� Furthermore� we will allow for N � the number of answers requested by






the application� to be provided as an expression �including support for complex expressions such as a
scalar subquery�� The addition of the STOP AFTER clause is su�cient to give the DBMS the cardinality
information needed to avoid wasted work due to row blocking �see the �rst example of Section ��� as
the DBMS then has a strict upper limit on the number of result tuples that can result from the query�

Stop Operators The second extension we propose is the addition of a Stop operator to the repertoire
of the DBMS�s query execution engine� The Stop operator produces the top �or bottom� N tuples of
its input stream� taking the stopping cardinality N plus a sort expression as parameters� The Stop
operator serves to encapsulate the function of the STOP AFTER clause� the query execution plan for a
top N or bottom N query will contain at least one Stop operator� In addition� given a Stop operator�
the implementation of the other �existing� operators� such as join operators� sort� group�by� and scans�
does not need to be changed at all�

Like many query operators� such as join� sort� and group�by� the Stop operator can be implemented
in any of several di�erent ways� If the input of the Stop operator is already ordered according to its
sorting expression� then the Stop operator will simply return the �rst N tuples of its input and then
signals 	end�of�stream�
 If the input is not ordered� and N is relatively small� the Stop operator can be
implemented using a priority heap as described in Section ���� Finally� if the input is not ordered� and
N is very large� the Stop operator can be implemented using a conventional external sort algorithm
that discards the remaining data after identifying the �rst N results�

New Optimization Rules and Modi�ed Pruning for Stop Operator Placement To correctly
enumerate plans with Stop operators� the query optimizer must be extended� This extension is quite
easy to implement in modern optimizers� as modern optimizers are rule�based� the enumeration of
plans with Stop operators can be arranged by adding new rules related to Stop operators to the
optimizer �GD��� Loh���� Note that it is important to enumerate all possible plans with Stop operators
during cost�based query optimization because Stop operators in�uence the cost of other operators and�
as a result� are likely to impact other cost�based decisions carried out by the optimizer such as join
ordering� choice of join methods� and access path selection�

In addition to de�ning new rules to enumerate alternative plans with Stop operators� the pruning
condition of a query optimizer that is based on dynamic programming needs to be changed� It is� for
example� possible for a subplan with a Stop operator and a higher cost than a corresponding subplan
without a Stop operator to end up being a building block for the best overall plan for the whole query�
This situation can arise because Stop operators have a non�negligible cost� and the quality of a subplan
with a Stop operator can only be seen for sure upon considering operators that come later in the
query plan� this is because such operators bene�t from the fact that the Stop operator yields a smaller
intermediate query result� The optimizer therefore cannot safely prune a plan with one or more Stop
operators in favor of another �otherwise equivalent� query plan without a Stop operator�

Stop Operator Placement New rules and a modi�ed pruning condition will ensure that all possible
plans with Stop operators are enumerated and that no query plans with Stop operators are pruned
prematurely� Of course� we also need to decide where Stop operators are to be placed in a query plan�
As shown in the �fth example of Section �� Stop operators should be located as early as possible in a
query plan so that the cost of subsequent operators will be reduced� On the other hand� Stop operators
should ideally only be placed at safe points� i�e�� at points in a query plan where their presence can
never cause tuples to be discarded that may end up being needed in order to generate the requested
N tuples of the query result� Thus� the goal is to �nd the earliest safe place for a Stop operator in a
query plan�

�



Safe places for Stop operators in a query plan can be found by inspecting the database�s in�
tegrity constraints together with the given query�s predicates �i�e�� the query�s WHERE clause�� For
the Emp�Dept�TEA query of Section ���� for example� placing a Stop operator below the joins with
Emp�Dept and Emp�TEA joins was safe because the referential and NOT NULL integrity constraints on
Emp�works in and Emp�teaNo guarantee that every Emp tuple will satisfy both join predicates� con�
sequently� they ensure that �at least� ��� result tuples will be produced from joins involving the ���
best paid Emps� Now consider a di�erent example� where the user asks for the Dept and TEA informa�
tion for the ��� best paid Emps that work in a 	research
 department� In this case� a Stop operator
could safely be placed below the Emp�TEA join� as before� However� it could not safely be placed below
the Emp�Dept join unless there is an integrity constraint that guarantees that every department is a
research department �because� in general� not all Emp tuples will survive a join with only the research
Dept tuples��

In �CK���� we also studied unsafe �a�k�a� aggressive� Stop operator placement techniques� these
techniques can be applied even if there are no appropriate integrity constraints� They would� for
instance� allow the placement of a Stop operator below the Emp�Dept join in the 	�nd the ��� best
paid Emps that work in a research department
 example discussed above� In this case� the optimizer will
estimate the number of tuples that should be �ltered out by the �unsafe� Stop operator by considering
cardinality and selectivity estimates and working backwards from the desired overall result cardinality�
For example� if every other Emp works in a research department� the unsafe Stop operator will be
instructed to stop after returning the ��� best paid Emps� these ��� tuples would be expected to
include the requested ��� result tuples� Of course� cardinality estimates can easily be too high or too
low� so that precautions must be taken to deal with such imprecise cardinality estimates� To deal with
cardinality estimates that are too high� a �nal Stop operator is required at the top of the plan in order
to make sure that no more than ��� query results are produced� to deal with overly low cardinality
estimates� the plan must somehow be restartable at run�time in order to produce the missing tuples
which were discarded by the unsafe Stop operator�

In �CK���� we studied the tradeo�s associated with an approach that allows unsafe Stop operators�
We saw that in some cases� it is indeed better to have low�level unsafe Stop operators even when the
cardinality estimates are imprecise� However� in other cases� we observed that excessive restarts due to
overly low estimates hurt performance dramatically� in extreme cases� the performance of the enhanced
system with unsafe Stop operators even dropped below the performance of a traditional system with
no support for top N and bottom N queries� In contrast� an enhanced system with only safe Stop
operator placement can never be outperformed by a traditional system�

��� Support in Current Database Systems

As stated in the introduction� several database vendors have recently added features that provide some
degree of support for top and bottom queries� Unfortunately� none has published information how
they have implemented those features� Thus� here we will discuss only the current version of DB�
for Common Servers �Version ������� as this is the only system that we were able to learn about and
experiment with for the examples presented in Section �� �

DB� allows users to specify that they want the �rst N answers of a query quickly via an OPTIMIZE

FOR N ROWS clause that can be given as an optional su�x for SELECT queries� The presence of an
OPTIMIZE FOR N ROWS clause in�uences query processing in DB� in two ways� First� it passes the
value of N to the run�time system of DB� so that DB� can adjust its row blocking� as a result� DB�
can do well on the �rst example of Section � if the query is given as an OPTIMIZE FOR ��� ROWS query�

�From comments in the manuals� it seems that Oracle � has followed an approach similar to that of DB� �ABF�����

�



Second� the presence of the OPTIMIZE FOR N ROWS clause makes the DB� optimizer favor pipelined
plans� this favoritism would allow DB� to also perform well in the second and fourth examples of
Section � �Cor�
�� It is important to note� however� that DB��s OPTIMIZE FOR N ROWS clause is only a
hint that instructs DB� to produce the �rst N answers quickly� users are allowed to consume more than
N tuples �at potentially lower performance� even when they give such a hint� whereas our STOP AFTER

clause instructs a DBMS to produce exactly N �and never more� answers� DB� thus never discards
answer tuples� preventing it from exploiting some of the signi�cant cost savings that are available
through the use of specialized Stop operators �especially in non�pipelined query plans� such as those
needed in the third and �fth example of Section ��� DB� has not �yet� integrated any of the techniques
of our approach described above�

� Conclusion

We have shown various ways in which traditional database systems are susceptible to wasted work
when evaluating top N and bottom N queries� We have seen that� in many cases� orders�of�magnitude
improvements can be achieved with moderate extensions to the parser� query engine� and optimizer of
an existing database system�

Most of the discussion of this paper has been concerned with top N and bottom N queries where
the requested result cardinality �N� was speci�ed in the query as part of a basic STOP AFTER N clause�
Another important class of queries are percent queries� which ask for� e�g�� the top P percent of the
answer set rather than the top N answers� Percent queries o�er even more opportunities to avoid
wasted work� though they also require additional work in order to determine what P� of the answer
really is �cardinality�wise�� We plan to study good strategies for percent query processing as future
work� in addition� we plan to study specialized algorithms for sorts and joins in the context of any kind
of top or bottom query� and and we plan to investigate new techniques for processing top and bottom
queries in the context of subqueries and views�

References

�ABF���
 E� Armstrong� S� Bobrowski� J� Frazzini� B� Linden� and M� Pratt� ORACLE� Server � Application

Developer�s Guide� Oracle Corporation� Redwood Shores� USA� �����

�CG�	
 S� Chaudhuri and L� Gravano� Optimizing queries over mulitmedia repositories� In Proc� of the ACM

SIGMOD Conf� on Management of Data� pages ������� Montreal� Canada� June ���	�

�Cha�	
 D� Chamberlin� Using the New DB�� IBM�s Object�Relational Database System� Morgan�Kaufmann
Publishers� San Mateo� USA� ���	�

�CK��
 M� Carey and D� Kossmann� On saying �enough already�� in SQL� In Proc� of the ACM SIGMOD

Conf� on Management of Data� pages �����
�� Tucson� USA� May �����

�Cor��
 IBM Corporation� DB� application programming guide for common servers� Manual� �����

�GD��
 G� Graefe and D� DeWitt� The EXODUS optimizer generator� In Proc� of the ACM SIGMOD Conf�

on Management of Data� pages �	������ San Francisco� USA� May �����

�Knu�

 D� Knuth� The Art of Computer Programming � Sorting and Searching� volume 
� Addison�Wesley�
Reading� USA� ���
�

�KS��
 R� Kimball and K� Strehlo� Why decision support fails and how to �x it� ACM SIGMOD Record�
���
�������� September �����

�Loh��
 G� Lohman� Grammar�like functional rules for representing query optimization alternatives� In Proc�

of the ACM SIGMOD Conf� on Management of Data� pages ������ Chicago� USA� May �����

�


