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Abstract

Since its creation, the ImageNet-1k benchmark set has played

asi
of different deep neural net (DNN) models on the classifica-
tion problem. Moreover, in recent years it has also served as
the princpal benchmirk fo asessing diffrent approaches
0 DNN training. Finishing 2 90-epoch ImageNet- 1K training
wilh ResNet i
training requires 10** single precision operations in total. On
the other hand, the world's current fastes! supercomputer can
finish 2 x 10!7 single precision operations per second. If we
can make full use of the computing capability of the fastest
supercomputer for DNN training, we should be able (o fin-
ish the 90-epoch ResNet-50 training in five seconds. Over the
last two years. a number of researchers have focused on clos-
ing this significant performance gap through scaling DNN
training to larger numbers of processors. Most successful ap-
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ABSTRACT
Synchronized stochastic gradient descent (SGD) optimizers with

to use large batch to achieve weak scaling [2, 4,5, 12, 23, 27). In
Hhis waythe i iscbiaid by tibring ovesl ihicughpnt
of the d fewer updates of the model.

data parallelism are widely used in training larg P
networks. Although using larger mini-batch sizes can improve the
system scalability by reducing the communication-to-computation
ratio, it may hurt the generalization ability of the models. To this
end, we build a highly scalable deep learning training system for
dense GPU clstes withthice main contributions: (1) We propose
training method that P
«umml. throughput of  single GPU without losing accuracy. 2)
We propose an optimization approach for extremely large mini-
batch s (s to 64 that ca trin CNN models n the mageNet
dataset without losing accuracy (3 We

However, there are two challenges when using large batch across
large clusters:
© Challenge 1 Larger mini-batch size often leads to lower
test accuracy, as there exists a generalization gap (15).
« Challenge 2: When using large clusters, it is harder to
scalability as the
ereases, especially for models with the high communication
to-computation ratio

Challenge 1. Larger minibatch size reduces the variance of
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Are ML Systems “Usable”? @J%@@
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Observation

If some of our users are not careful, they are left with
nothing else than a more powerful
“overfitting machine”.

Let’s provide some guidelines for proper ML systems usage!
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® © ® () os3Lab/easeMLTemplate x  +
<« C (O @ GitHub, Inc | https://githu... Q@ ¢

.. DS3Lab / EaseMLTemplate

= > 2 ~
Development Set > N t > < Code Issues 0 Pull requests 0 Projects

ErI'OI‘ AnaIYSiS Commit neW MOdeI No description, website, or topics provided.
Developer Manage topics
® 7 commits v 1branch
Branch: master- New pull request Create new file
What IS hard about thIS? Ce Zhang and Ce Zhang test
o]
o . . W data_train®, init updates
1. Rigorous guaranties, but as cheap as possible. T e
B prog_features\\\ init updates
o . . oy . . . s prog_labels A init updates
2. Leakinginformation at every commit implies Adaptive Analytics. =257 ci
"5 README.md * Update README.md
model \\\ \\\ init updates
Ou r resu Its: test_model.sh \\\ ‘\\ init updates
@ README.md N |

- Statistically sound estimators to reduce sample (and label)
complexity of the testset by 1 - 2 order of magnitude. i | !

EASE.ML FAILING EASE.ML




System Overview

(4) Ask for n test labels when it needs more

009
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(5) When test labels lose statistical power,
downgrade to val set and let developers know

Manager

ML Repo (e.g., Github)

Branch: master~ New pull request Create new file

Ce Zhang and Ce Zhang test

I data_test

Public

(1) Specify Requirements

W data_train

o 02
test 4_
init updates Publlc A—I t

i data_val

e.g., all models checked in
should have accuracy > 0.8
(¢, )-approximation.

@ prog_features

@ prog_labels

b [ coevom]

README.md
model

test_model.sh

init updates Developer

init updates
init updates

ci

Update README.md <

init updates

(2) Commit a stream of T models

init updates

(3) Receive Pass/Fail signal per commit

EASE.ML EASE.ML FAILING



Managers Specify Requirements & 0@
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® © ® () os3Lab/easeMLTemplate

< C (O @ GitHub,Inc | https:/githu.. Q@ & &

R1: New model needs to be better than the old model by at
least 1%, with probability 0.999.

./ DS3Lab / EaseMLTemplate

<> Code Issues 0 Pull requests 0 Projects

No description, website, or topics provided.

n —-— o > 0.01, p > 0-999 Manage topics

® 7 commits v 1branch
R2: New model cannot be different from the old model on Branch: master-  New pull request Create new file
¥ more than 10% of predictions, with probability 0.999. Go Zharig and(Ca Zhitng tos:
i data_test test

@ data_train init updates

@ data_val init updates

Manager d < 0 : 1 ! p > 0 : 999 s prog_features init updates

-&roq_laﬂels_ init updates

. 1 .ease.yaml| | ci

w R3: New model always have accuracy higher than 0.8, = REABME A Update README.md

with probability 0.999. S

= README.md

n>0.8, p>0.999

\l R4: Satisfy both R1 and R2, with probability 0.999.

n-o0>0.01 and d < 0.1, p > 0.999 .
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® () ps3Lab/EaseMLTemplate x  +
< C O @& GitHub, Inc | https:/githu.. Q

DS3Lab / EaseMLTemplate

~ . _I . <> Code Issues O Pull requests 0 Projects
N t— Develop a ML model and commit.

No description, website, or topics provided.

Developer Manage topics
® 7 commits v 1branch
EaseMLTemplate — -bash — 80x24 Branch: master- New pull request Create new file

Ces-MacBook-Pro:EaseMLTemplate cezhan$ git add prog_features/*
Ces-MacBook-Pro:EaseMLTemplate cezhan$ git add prog_labels/*

Ce Zhang and Ce Zhang test

Ces-MacBook-Pro:EaseMLTemplate cezhan$ git commit -m "new model" B datactest test

[master 0f0bb3f] new model data_train nit updates

2 files changed, @ insertions(+), @ deletions(-) data_val nit updates
create mode 100644 prog_features/feature3.py prog_features nit updates
create mode 100644 prog_labels/label3.py prog_labels init updates
Ces-MacBook-Pro:EaseMLTemplate cezhan$ git push “asevam G

Counting objects: 10, done. oo r—
Delta compr‘g_ssion using up to 4 threads. s e
Compressing objects: 100% (10/10), done. frocol nitgpdatos
Writing objects: 100% (10/10), 1001 bytes | 1001.00 KiB/s, done. test.modatish nitupdates
Total 10 (delta 5), reused @ (delta @) & README.md

remote: Resolving deltas: 100% (5/5), completed with 1 local object.
To https://github.com/DS3Lab/EaseMLTemplate.git

7255f6b. .0f0bb3f master -> master
Ces-MacBook-Pro:EaseMLTemplate cezhan$
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< C O @& GitHub, Inc | https:/githu.. Q
. DS3Lab / EaseMLTemplate
. <> Code Issues O Pull requests 0 Projects
./ ——‘ Develop a new ML model and recommit.
No description, website, or topics provided.
M e topi
Developer shinsi
® 7 commits v 1branch
Branch: master~ New pull request Create new file
€ EasoMLTemplate bash — 80x24
Ces-MacBook-Pro:EaseMLTemplate cezhan$ git commit -m "another model" Ce Zhang and Ce Zhang test
[master 7012¢53] another model T —
A : P 2 ata_tes es
2 files changed, @ insertions(+), @ deletions(-) =
data_train nit updates

create mode 100644 prog_features/feature4.py

create mode 100644 prog_labels/label4.py data_va

Ces-MacBook-Pro:EaseMLTemplate cezhan$ git push prog_features nit ug

Counting objects: 4, done. prog_labels init updates

Delta compression using up to 4 threads. .ease.yaml ci

Coqpressing objects: 100% (4/4), done. ] README.md Update README.md

Writing objects: 100% (4/4), 369 bytes | 369.00 KiB/s, done. P e otos

Total 4 (delta 3), reused @ (delta 0) ko i
test_model.sh nit updates

remote: Resolving deltas: 100% (3/3), completed with 3 local objects.
To https://github.com/DS3Lab/EaseMLTemplate.git @ README.md
0f0bb3f..7012¢c53 master -> master

Ces-MacBook-Pro:EaseMLTemplate cezhan$
EASE.ML

EASE.ML



Core Technical Component:

Adaptive Statistical Queries

We are inspired by the following seminal work:

- Theladder: Areliable leaderboard for machine learning competitions. Blum and Hardt, 2015
- The algorithmic foundations of differential privacy. Dwork et. al., 2014
- Thereusable holdout: Preserving validity in adaptive data analysis. Dwork et. al., 2015
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Background: Adaptive Analytics ©.9
ease.ml d
Contract between System and User: Giveng, o, T, how large How can we decrease the dependency
Pr [3t, |£i(X1,...,Xn) — fi(X)] > €] <6 does n need to be? of nong, o, T as much as possible?

iidsamples X7 X9 X3 e e ¢ X, ~~ X [(un)Labeled Samples from Test]

A A A Encryption

fi| [o(h({Xi}) £l |9(f2(0Xi}) » o o fr| [9(fr({Xi}))

A &L

Developer

A 0
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Background: Single Steps - Hoeffding’s Inequality 0.0@
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Theorem (Hoeffding, 1963):
Let X7, Xo,...,X, bei.i.drandom variables with
VX;0< X; <land X =137 X;:
Then Ve
Pr [X —~E[X] > e} < exp(—2ne?).

In =

5
§ <exp(—2ne?) — N > 5o

11



Background: Multiple Steps - Existing Solutions o 0@
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fo({Xi}) = hys,(x1 %0, . x03) ({Xi })

Baseline Approach: Resampling Ladder (Blum and Hardt, 2015) Other DP - inspired
approaches
Require a new sample for each Constrains how g(-) evolves over
step. time.
[
(65: 0.01 n> T—;nf ~17M n > 69K
= 0.001 €

T — 39 Expensive: ~53K /Day g(-) is non-monotonic Unclear how to add

noise to g(-) in ClI

Goal: Optimizing Sample Complexity for the specific regime that our system cares about.

12
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Overview of Optimizations el
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Goal: Optimizing Sample Complexity for the specific regime that our system cares about.

I
I3) Conditional Variance |

14) Active Labeling |

13
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Observation 1: The Most Trivial Approach is Not That Bad

- We know g(-) returns a binary signal.

- # of possible functions for T binary signals < 27

- Apply union bound on all possible functions.

& <exp(—2n€’) —» n > T2 < stillorder O(T)
- €
Baseline Union Bound
e = 0.01 ;
—In = TIn(2)—Iné
5=0001 n>T—ZL ~17M n> P00~ 145K
€

T =32

14
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Observation 2: Conditional Variance Bound

The most popular condition used in ease.ml/ci:

n-o>0.01 and d< 0.1, > 0.999

The new model only makes different predictions on at
most 10% of data points compared to the old model.

The new model is better than the old
model by at least 1 percentage point.

Observation2.1: d < 0.1 does not need labels.

15



Adaptive Analytics - Observation 2
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Observation 2: Conditional Variance Bound

Theorem (Bennett, 1962):

Let X7, Xs,...,X, beii.d random variables with

Then Ve
Pr [S"_E[Xi] > 6] < exp(—th (%)),

with A(u) = (1 + u) In(1 + u) — u for u > 0.

VX; | X <1, EX?]=0*and S, =Y 1 X; ¢

Baseline Union Bound Benett
e =0.01
J = 0.001 ~7.5M ~609 K ~63 K
T =32

16
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Adaptive Analytics - Observation 3 O.O@
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Observation 3: Not all labels are useful

Focus: n - o > 0.01, p > 0.999

Q Q Q Q Q If new models and old models are only
0 1 1 1 0

different in their prediction with probability v,

Old Model: how many savings can we have in terms of
New Model: | O 1 110 1 labels (NOT SAMPLES) that we need to
provide?
Same predictions - Not useful
to estimate the difference
If the probability of two models being Hoeffding 15K samples/signal
different is v ~ O(+V), than the amount of v=0.1 2.2K samples/signal
labels we need is n = O(1/¢). (Assuming unlabeled data points are free)

17



ease.ml/ciinAction

ease.ml/ci

$ git commit -m newmodel

'

[v]

o README g 9 README

EASE.ML  FAILING

Popular Use Cases: (¢ =0.0125)

n - o >0.01l and d < 0.1

n>0.8

Cheap Mode: (¢ =0.025)

n - o0o>0.01 and d < 0.1

n>=0.8
(]

A N

10s / Label | 300 Labels/Day => < 1 Hour / Day ,

009
Mo
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# of Labels/32 Models
Baseline ease.ml/ci
4.8M 41K
(150K / Day) (1.3K/ Day)
1.1M 95K
(35K / Day) (3K / Day)
1.2M 11K
(38K / Day) (330 / Day)
283K 24K
(8.9K/ Day) (745 / Day)

18
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Ongoing Projects f‘é@@
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ease.ml/ci ease.ml/meter
$ git commit -m newmodel
0% 10% 20% 30% 40% 50%
l Ly

If ML is “Software 2.0”, what are the missing
principles in “Software Engineering 2.0”?

EASE.ML FAILING EASFE _MI DASSING

2018, tauk_scorer- 1434 ~ e |"”"I"l"""l"lI"I“I"l“""l"'"”"l"
W README. g
..

Release of both Systems planed this Summer
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