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ABSTRACT
Business Rule Management Systems (BRMSs) are widely

used in industry for a variety of tasks. Their main advantage

is to codify in a succinct and queryable manner vast amounts

of constantly evolving logic. In BRMSs, rules are typically

captured as facts (tuples) over a collection of criteria, and

checking them involves querying the collection of rules to

find the best match. In this paper, we focus on a real-world

use case from the airline industry: determining the minimum

connection time (MCT) between flights. The MCT module

is part of the flight search engine, and captures the ever

changing constraints at each airport that determine the time

to allocate between an arriving and a departing flight for a

connection to be feasible. We explore how to use hardware

acceleration to (i) improve the performance of the MCT mod-

ule (lower latency, higher throughput); and (ii) reduce the

amount of computing resources needed. A key aspect of the

solution is the transformation of a collection of rules into a

Non-deterministic Finite state Automaton efficiently imple-

mented on FPGA. Experiments performed on-premises and

in the cloud show several orders of magnitude improvement

over the existing solution, and the potential to reduce by 40%

the number of machines needed for the flight search engine.
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1 INTRODUCTION
Business Rule Management Systems (BRMSs) are used in en-

terprises to capture changing sets of policies and constraints

that affect business logic [4, 13, 17, 20]. Examples of appli-

cations include, e.g., checking the eligibility of a customer

to particular offers, or identifying fraudulent operations by

checking them against known patterns. Very often, BRMSs

are embedded as part of larger applications, such as search

engines. In such settings, the performance of the BRMS can

be a bottleneck for the overall system. In large deployments,

where the number of rules involved might be in the order of

hundreds of thousands, BRMS can also have a large footprint

in terms of the computing infrastructure needed.

In this paper, we focus on a concrete use case from the

airline industry: the flight search engine used by Amadeus

to provide search services to the travel industry. Like many

other search engines, Amadeus’ flight search engine is a

large scale distributed system comprising many different

components. The Minimum Connection Time (MCT) mod-

ule is one such component and it is implemented atop a

BRMS. It is used in the early stages of the search (in the so

called Domain Explorer component) to determine the va-

lidity of a connection between two flights in terms of the

time needed between the arrival of a plane and the depar-

ture of the connecting flight. The module plays a key role

in terms of the performance and total cost of operating the

search engine. When a query looking for flights between a

departure and a destination airport needs to be processed,

a large number of potential routes has to be computed. For

all routes that are non-direct flights, the MCT module is

invoked to ascertain the minimum connection time to the

next flight. Thus, the MCT module needs to fulfil stringent

performance requirements on both latency per query and

overall query throughput. Because it is used as a module

within a larger system, there are additional constraints in

terms of the amount of memory used that determine what

type of BRMS can be employed in practice. In the current

deployment, the MCT module is responsible for 40% of the

computing resources used by the Domain Explorer.
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In what follows, we describe our efforts to redesign the

MCT module to achieve several goals. First, to reduce the

latency involved in computing the MCT and, if possible, to

also increase the throughputwithout having to use additional

computing resources. Second, to provide a scalability path at

a time where the number and complexity of the rules used

in MCT is increasing; while the latency margin for query

processing remains constant, since the flight search is an

online interactive system. Third, to determine whether the

number of computer nodes can be reduced so as to have a

more efficient flight search engine. On top of these goals,

our solution must respect the very restrictive constraints on

downtime for rule set updates imposed by the system.

The solutionwe propose is based on hardware acceleration

through FPGA, enabling both orders of magnitude better

performance, as well as a different architecture, where an

FPGA used as a co-processor (PCIe attached) can replace

several CPU-only computing nodes. The contributions of the

paper are as follows:

(i) We explore the problem of embedding a BRMS into a

search engine and discuss the many constraints affect-

ing the overall system architecture and leading to using

one system over another. We also briefly comment on

current implementations, and why it is important to

improve their efficiency.

(ii) We describe how to efficiently query large rule collec-

tions by capturing the rules using a Non-deterministic

Finite State Automaton (NFA). We provide two ver-

sions of the design, one for multi-core CPU, and one

for FPGAs. We also describe in detail how to exploit

the potential for parallelism on FPGAs to achieve high-

frequency clock designs.

(iii) We evaluate the resulting system against two baselines:

Drools [4], a widely used open-source BRMS, and our

own CPU implementation using the NFA structure.

We also evaluate the design both on-premise and in a

cloud deployment over Amazon F1 instances.

(iv) Our results demonstrate a potential gain for the FPGA

version of our design that is four orders of magnitude

faster than the current latency threshold, and three

orders of magnitude faster than Drools and the CPU

version of the same design implemented on the FPGA.

In terms of cloud efficiency (queries per U.S. Dollar),

our FPGA solution is an order of magnitude better

than the CPU version. The results also suggest a po-

tential reduction of 40% in the number of machines

needed for the Domain Explorer, as a consequence of

the performance gains obtained from the FPGA de-

sign. All combined, the high energy efficiency of our

solution indicates a reasonable move in the context of

environment-conscious deployments.

2 BACKGROUND AND RELATEDWORK
In this section, we cover necessary background information

on BRMSs, the Amadeus flight search engine, the Minimum

Connection Time module, as well as about FPGAs. We also

differentiate the results in this paper from those in the litera-

ture by pointing out the differences between more general

approaches and our use case.

2.1 Business Rule Management Systems
Business Rule Management Systems are widely used both

as stand alone engines as well as components of larger sys-

tems. Examples of BRMSs include Oracle Business Rules [20],

IBM’s Operational DecisionManager [13],Microsoft’s BizTalk

Business Rule Engine [17], or open-source systems such as

Drools [4]. These engines capture complex and evolving busi-

ness logic as a set of rules expressed in a high level syntax.

Rule Engines are then used similarly to a database by posing

queries that return a decision or trigger an action according

to the parameters set in the query.

In a rule engine, the simplest form of matching consists

of retrieving the rules in the database fitting the query by

iterating over the rules, a process that can be accelerated

using indexes [16]. More advanced forms of query processing

involve forward chaining and/or backward chaining, where

each of the queries is treated as a fact and, in an iterative

process, the engine derives new facts until a rule is found;

determining the decision or action to be followed. In these

cases, more general solutions such as the RETE algorithm [8,

23] are used. Rule engines differ as well in the way they

operate. They range from the static, stateless engine that

processes queries and delivers matching rules to complex

event processing systems that keep state and are constantly

fed with events, triggering an action when some particular

state is reached [14, 26].

In this paper, we focus on stateless rule matching rather

than on the more general inference case. The use case is sim-

ilar to that of XML processing systems [2, 3, 11]. Unlike the

former ones, however, the MCT use case involves a wider va-

riety of data types andmatching conditions, as well as having

no ordering restrictions on the processing of the attributes.

Limiting as these constraints might seem, they are actually

met in many situations. Within the airline industry, stateless

rules over a collection of attributes are used to determine,

for instance, whether a passenger is eligible for an upgrade,

whether a ticket can be changed, or whether overbooking is

allowed in a flight and by how much. Amadeus alone has a

total of 783 use cases of stateless business rule engines used

in production. More generally, our approach matches almost

the entire eXtensible Access Control Markup Language [22],

an OASIS standard for stateless attribute-based access con-

trol, used to define and process access control rules of the
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Table 1: Example of the rules r[0,5] determining the
Minimum Connection Time (actual rules have 22 cri-
teria) and a possible query ρ0.

Airport Time frame Region Terminal Decision Precision

r0 ZRH * International * 90 min Low

r1 ZRH * Schengen T1 25 min Middle

r2 ZRH Summer ’20 Schengen T1 40 min High

r3 ZRH Winter Schengen T1 25 min High

r4 CDG Winter Schengen T1 25 min High

r5 CDG Sundays International T2 45 min High

ρ0 ZRH 12
th
Aug ’20 Schengen T1

type “If the user meets conditions A, B, C, D; and the access
meets conditions E, F; then grant access”.

For the rest of the paper, we will use the following notation

when needed (see Table 1 for an example). A rule-type t ,
similar to a database schema, is a structure t = ⟨C,R,D⟩,
where C is a set of criteria (e.g., Airport, Time frame, Region,
and Terminal); R, a set of rules; and D, a set of decisions (e.g.,
25, 40, 45, and 90 minutes). A criterion c ∈ C is a structure

c = ⟨A, µ,ϖc ⟩ where A, is a set of values — or alphabet

(e.g., Schengen and International for criterion Region); µ :

A2 → 0, 1 a matching function (e.g., a numerical range check

between the Time frame and the query value); and ϖc , a

precision weight (i.e., how generic or specific the criterion is).

A rule r ∈ R is a structure r = ⟨χ ,d,ϖr ⟩ where χ : C →⊥ A,
is a partial assignment function from criteria to values (i.e, a

unique combination of values); d ∈ D; and ϖr =
∑
ϖc , the

precision weight of the rule. A query ρ is a structure ρ = ⟨χ⟩.
Let us consider rule-type t = ⟨C,R,D⟩ and a query ρ. We

say that a query ρ matches a rule r , denoted ρ ∼ r , when
the following condition holds: ∀c ∈ C : {µc (χ

ρ
c , χ

r
c )) = 1}.

In most related work, the matching function µ uses simple

binary (e.g., and, or, xor) or integer (e.g., equal, greater than)
comparisons between values. In our case, the matching func-

tion is far more complicated as we discuss below.

For queriesmatchingmultiple rules — like ρ0, whichmatches

both r1 and r2 rules — a second step is required to select the

most precise one, determined by the precision weight ϖ . R′

is the set of all rules r ∈ R that match ρ: R′ = r ∈ R | ρ ∼ r .
R′′

is the subset of R′
rules that have maximum precision

weight: R′′ = r ∈ R′′ | ∀x ∈ R′,ϖx ≤ ϖr . In the context of the

MCT module, an offline correctness check ensures that R′′
is

either empty or contains only one rule, otherwise it would

necessarily indicate two contradictory rules. In situations

where R′′
may be a set of more than one rule, additional pre-

cision distinction methods must be proposed, or the system

must relinquish the single decision result requirement.

MCT

Domain 
Explorer

Route
Selection

Pricing
Engine

CPU

Route
Scoring

CPU CPU

CPU
Network 

communication

Figure 1: The Flight Search Engine from Amadeus.

2.2 A Flight Search Engine
The Flight Availability Search and Pricing Engine (Figure 1)

is a search engine that, given a query specifying an origin and

a destination airport, as well as the corresponding dates, lists

potential routes between the departure and arrival points

with the corresponding flight information and prices. The

engine works as an online interactive service and has strict

Service Level Agreements (SLAs) in terms of response time

and throughput, as it is used by many companies to pro-

vide travel services to end customers. Each component has

a corresponding latency bound that must be met, so that

the overall query processing remains under four seconds.

Queries can trigger exploration of a very large space of op-

tions, for instance, when a user is flexible on the departure

and/or arrival dates.

The engine is divided into several components. The Do-
main Explorer searches the flight domain, exploring all pos-

sible connecting airports, carriers and flights combinations;

and pre-selects a number of potential routes. These routes are

fed into the Route Selection component, which uses heuristics

and a decision tree ensemble [21] (module Route Scoring) to
reduce further the set of potential routes most likely to be

bought. The reduced set is passed on to the Pricing Engine,
which then computes the price for each flight combination.

The engine is currently implemented in a data centre archi-

tecture, where the different components run on different

machines, and many machines are used to run the compo-

nents in parallel to reach the necessary throughput. The

system is large, with each one of the components using sev-

eral hundred machines. In recent work, we have explored

the complex interplay between the number of routes being

considered and the overall throughput/latency constraints,

and we refer to [21] for more details on that aspect of the

system and how we successfully used hardware acceleration

to optimise the Route Scoring module.

The MCT module is part of the Domain Explorer and runs

on the same machines. This design is necessary to cut on the

number of network hops needed to process a query, but im-

poses restrictions on the rule engine. For instance, Drools [4]

requires 9.5 GB of main memory to run the hundreds of thou-

sands MCT rules. Such a high resource consumption makes it
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impossible to embed it within the Domain Explorer given the

existing architecture. Deploying it stand-alone in its own set

of servers is not an option either, as it would cause network

overhead. As a result, the MCT is a customised implemen-

tation in C++ developed at Amadeus intended to provide

the required performance while minimising memory con-

sumption. In addition, being part of an online interactive

service as the Domain Explorer, MCT downtime for rule set

updates is restricted to a minimum. Nonetheless, the current

MCT module deployment consumes 40% of the computing

resources allocated to the Domain Explorer, giving a good

idea of why it is important to make it more efficient.

2.3 MCT: Filtering Impossible Connections
The rules determining the minimum connection time are

provided by each airline. The connection time is affected by

a number of variables (e.g., airports, terminals of arrival and

departure, whether passport or immigration controls are in-

volved, aeroplane model, time of day, etc.). The rules defining

the MCT change regularly, so airlines can adapt their flight

offer to their most recent logistic and commercial constraints

(e.g., temporal peaks in flow of flights or passengers, changes

in connection preferences between airlines, etc.). The flight

search engine encompasses all airports worldwide, and ev-

ery airline contributes a long list of rules for every airport

where they operate. Currently, the MCT module operates on

over 136K rules, and one of the goals of the work reported

in this paper is to be able to scale it to 400K rules without

performance losses or requiring additional computing nodes.

Table 1 shows a simplified, but syntactically representative

example of how the MCT rules look like, note that actual

rules have twenty-two criteria.

There are several differences in rule management between

the MCT module and general-purpose BRMS. Unlike regu-

lar expression matching, commonly used in complex event

detection over streams, e.g., [14, 27], there are no ordering

constraints between the different criteria either for rules or

for queries. In some sense, rules and queries, as used in MCT,

have the same semantics as tables in the relational model in

terms of imposing no order among the attributes. The same

distinction applies with work done for filtering XML [3, 11],

where ordering is derived from how an XML path is enumer-

ated. Moreover, unlike in stream processing, XML filtering,

or complex event detection, the matching criteria used in

MCT are very rich and highly data type dependent. Every

criterion uses a different alphabet and data type, requiring

specialised comparison operators for each one of them. The

MCT use case requires support for: ranges (e.g., over dates

or flight numbers); wildcards, ‘*’, used in non-mandatory

criteria to match any query value; and a variety of specialised

data types (terminals, booleans, airline codes, etc.). MCT also

uses hierarchical data where elements are used to subsume

a long list of other elements [16] (e.g., Europe refers to all

airports in Europe). The more complex data types are impor-

tant to simplify the writing of the rules. This can be seen in

Table 1, where rules with Region=Schengen stand for what

otherwise would be the Cartesian product of all the airports

within the Schengen area.

2.4 FPGAs
A Field-Programmable Gate Array (FPGA) has traditionally

been amatrix of configurable logic that could be programmed

using a Hardware Description Language to implement arbi-

trary logic circuits [25]. Nowadays, an FPGA contains much

more than re-configurable logic and is also increasingly be-

ing designed to be extensible [19].

An FPGA is a spatial architecture, where designs exploit

parallelism through pipelining and redundant instances of

the processing elements. This property is what allows FPGAs

to operate at line rates, for instance, when connected to

the network in a smart-NIC configuration as it is done by

Microsoft in the Catapult deployment [7]. In the context of

this paper, we will exploit this property to implement an NFA

to model the MCT rule engine. The advantage of an NFA on

an FPGA is that multiple transitions can be evaluated within

one clock cycle. As a result, and even with the lower clock

rates of FPGAs (150-500MHz) compared to CPUs, FPGAs can

provide an unprecedented degree of parallelism over other

computing platforms. We also increase parallelism through

pipelining: we divide the design in stages arranged as a linear

data flow, such that stages can process the next query as soon

as they finish with the previous one.

2.5 Finite State Automata
Finite State Automata (FA) are used in a wide range of ap-

plications: parsing, compilation, text processing, regular ex-

pressions, networking, complex event processing, etc. So

wide, in fact, that there are proposals to provide support for

FAs directly in hardware [5, 6, 18]. From the data process-

ing perspective, there is also a large amount of literature

on the differences between Deterministic (DFA) and Non-

Deterministic (NFA) FAs. On CPUs, the random memory

access patterns caused by the multiple transitions of an NFA

affect performance unless the matching operations involved

with each transition are expensive enough. This is the case

in data processing tasks such as, e.g., parsing and comparing

strings in XML processing, where NFAs are the norm as a

way to avoid having to deal with a very large number of

states [2, 3, 27], since they do not suffer from the state explo-

sion that DFAs are prone to. In our use case, for instance, the

number of NFA transitions reaches the order of hundreds of

thousands, whereas the same rule set requires several orders
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of magnitude more on the DFA version. The amount of ef-

fort to generate and process such a large data structure does

not pay off given the relative performance improvements it

brings (Section 5.2.3). For some different scenarios, however,

it has been pointed out that, in some use cases for CPUs,

DFAs can be a viable alternative to NFAs for stream process-

ing, as a careful design can avoid the state explosion [11, 15].

We have not been able to apply such techniques to our case

to keep the DFA to a manageable size.

Much effort has been devoted to optimise the amount

of storage of diverse forms of FAs [1, 11, 14, 24]. A lot of

this work has many similarities, differing mostly on how

each approach takes advantage of the concrete use case to

optimise the FA. In here, we use similar techniques adapted to

theMCT use case. For instance, Kolchinsky and Schuster [14]

recently suggested techniques to combine multiple patterns

into a single NFA for complex event processing over streams.

Like many others, they exploit criteria reordering to increase

prefix merging, with the resulting NFA taking the form of

a tree. By additionally exploiting suffix merging, our NFA

preserves the level by level structure of a tree, and is turned

into a more efficient acyclic directed graph.

A multitude of research efforts in academia have demon-

strated FPGA implementations of various NFA use cases [9,

24, 31, 32]. Sidler et al. [24] propose an FPGA engine for string

processing using NFAs. Unlike our design, each pattern (rule)

is represented with its ownNFA, a common approach [10, 32]

when there are many queries and a few rules. In [24], as in

our design, the NFA resides in memory and, thus, can be

dynamically updated at runtime without having to reconfig-

ure the FPGA. This is a common trade-off in FPGA designs,

where hard-wiring the NFA states into logic elements boosts

performance [18], but imposes reconfiguring the FPGA for

every rule set update, which causes long downtime. In addi-

tion, mapping the NFA to circuit logic does not scale well for

NFAs with many states. Ganegedara et al., [9] have proposed

an automated framework to translate regular expressions

into NFAs, and map them onto FPGAs. Their approach gener-

ates an NFA for each pattern, and tries to group similar NFAs

later on using standard techniques. For a large collections

of regular expressions, this approach explodes in terms of

resource requirements and does not scale. In our case, rules

are simpler than regular expressions and we can exploit sev-

eral aspects of the MCT use case to simplify the automatic

generation of the NFA.

3 A COMPACT REPRESENTATION OF
BUSINESS RULES

In what follows, we present step by step the NFA we will use

for the implementations, we also explain how we exploit the

characteristics of the rules to optimise the final graph.

3.1 Data Structure
As briefly discussed above, there are many algorithms to

construct FAs from regular expressions. In our case, the se-

mantics of the MCT rules and the structure of the NFA we

construct make the process much simpler. Unlike most of

the work done to date on FPGAs, which typically focuses

on processing regular expressions [10, 24, 26, 32], we do not

have to deal with NFAs of arbitrary structure. AnMCT rule is

not a regular expression, and matching is just a conjunction

of comparisons. In addition, the criteria can be evaluated in

any order, providing more flexibility for optimisations.

Nodes in the NFA correspond to a state in which the query

being evaluated has matched the path from the root to that

state. Transitions correspond to possible values for the corre-

sponding criterion in each level. For the moment being, we

assume the criteria are processed in the same order as they

are listed in the rules/queries. We start with a single root — or

origin node. From this, the NFA is first constructed as a tree.

For each rule, a full path to a leaf is constructed by adding a

transition for each criterion labelled with the value indicated

in the rule. Between each transition, an intermediate node is

added. The value at the leaf is the minimum connection time

implied by that rule. Once this is done for all rules, the NFA

consists of a root node from which as many paths emanate

as there are rules (Figure 2.a). Although the final NFA will

not be a tree (Figure 2.c), it retains a level by level structure,

where each level in the tree corresponds to one criterion in

the rules. The resulting graph has the following properties:

• All paths share the same root;

• Every level correspond to a single rule criterion, hence

the depth is equal to |C|;
• Multiple states may be active (valid paths) at the same

time;

• There are L leaf states, where L = |D| is the cardinality
of the alphabet of decisions (in our case, the number

of possible connection times across all rules);

• It is an acyclic directed graph traversed by navigating

from the root to the leaves;

• A matched rule is a continuous valid path between the

root and a leaf — and vice-versa.

3.2 Optimisations
Starting from the constructed tree (Figure 2.a), we perform

three types of optimisations: forward path sharing (or pre-

fix merging); backward path sharing (or suffix merging);

and changing the order in which the criteria are considered.

The order in which these optimisations are applied matters.

We determine first the order in which the criteria should

be evaluated, then perform prefix merging, and finalise the

process with suffix merging. These optimisations resemble

approaches often used in practice. Reordering the criteria is
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40 min
T1Summer’20 SchengenZRH

90 min
** InternationalZRH

25 min
T1* SchengenZRH

25 min
T1Winter SchengenZRH

25 min
T1Winter SchengenCDG

45 min
Sundays International T2CDG

(a) Initial tree (one rule = one path)‘.

*

40 min
T1

90 min

T1
25 min

25 min
T1

25 min
T1

45 min

Summer’20

*

Winter

Winter

Sundays

Schengen

International

Schengen

Schengen

Schengen

International T2

ZRH

CDG

(b) Prefix merging.

25 min
T1

Winter

Winter

Schengen

Schengen

Schengen
CDG

*

40 min
T1

90 min

Summer’20

*

Schengen

InternationalZRH

45 min
Sundays International T2

(c) Suffix merging.

Figure 2: Several steps in the creation of the NFA from a rule set showing (a) the initial tree; (b) the process of
forward path sharing; and (c) the process of backward path sharing. The final NFA will merge the three red and
two blue states and corresponding paths in the middle level of (c) through suffix merging.

also called push-down of operators when processing XML

or streams [12, 14, 27], although, in our case, we have more

freedom than the use cases we are aware of, since we can

consider criteria in any order. Prefix merging, also known

as sub-graph elimination, is also common and often used in

combination with reordering (i.e., reordering is done so as

to facilitate path sharing). Suffix merging is far less common,

since it merges paths to the leaves and, unless some measure

is taken to prevent it, makes it impossible to know how a

final state was reached. In our case, since what is of interest

is the decision value, merging paths is a viable strategy, as it

allows to reduce the size of the graph even further.

In the forward path sharing phase (Figure 2.b), same-value

transitions leaving the same state are merged, as well as

their original destination states. The algorithm navigates

the graph (at this point still a tree structure) breadth-first

starting from the root until there is no more merging possible

in the current level. Once this is achieved, it proceeds to the

next level. In the backward path sharing phase (Figure 2.c),

states sharing the same path to a leaf are merged. We start

at the leaves and proceed backwards until no more merging

is possible. With this step, the initial tree adopts a graph

structure, since distinct branches may be merged by their

leaves or common paths to their leaves.

Reordering the criteria in the MCT case plays a bigger

role than in the use cases considered in the literature. When

processing regular expressions, the NFA is operating over

the same criterion, i.e., all states and the entire NFA works

on a single alphabet. In our case, every criterion has its own

distinct alphabet. As a result, reordering not only facilitates

path sharing, but also has a substantial impact on the space

needed depending on the relative cardinality of each crite-

rion, which varies significantly among criteria.

Since we have no constraints in the order in which criteria

should be considered, the number of possible permutations

is |C |!. In MCT, |C | = 22 so the potential number of permu-

tations is on the order of 10
21
. Given that the NFA must be

regenerated on a regular basis, we currently use two heuris-

tics to decide on the ordering of the criteria when building

the graph. The first one focuses on memory consumption,

while the second one focuses on navigation latency. As a

baseline for comparing the different approaches, we take an

NFA built using a random order for the criteria.

The fixed parts of our NFA are the root and the |D | leaves,

they remain constant regardless of criteria ordering. In gen-

eral, a transition in the first level of the NFA would be shared

by all rules with the same value in that criterion. However,

transitions with the same value are likely to be duplicated

in intermediate levels when the prefix of their paths is not

the same. Therefore, for a given number of rules, and as-

suming uniform distribution of values in each criterion, the

probability of having the same value for criterion c1 will be
higher than for criterion c2 if |Ac1 | < |Ac2 |, in other words,

if the cardinality of the alphabet in c1 is smaller than that

in c2, then it is more likely that c1 transitions will be shared
by more rules. By placing c1 before c2, we maximise prefix

sharing and reduce duplication in the next level, thereby

reducing the size in memory of the NFA. This is similar to

pushing down selection and projection in a relational system.

The idea is captured by the following heuristic:

Heuristic 1. (H1_Asc) Let the rule-type t = ⟨C,R,D⟩,
∀ca, cb ∈ C : a < b ⇔ |Aca | ≤ |Acb |, where a and b are
the level position (depth) of the criterion within the NFA.

For Heuristic 1, the bigger the differences in alphabet

sizes (and the presence of attributes with very large alphabet

sizes), the more efficient the heuristic will be, as the amount

of redundancy removed will be larger. Given the symmetry

of the path-sharing optimisations, this heuristic also applies

in the reversed order. Sorting criteria from the biggest to the

smallest alphabet causes a similar effect for backward path

sharing. Yet, the actual merging depends on the minimum

connection time for the rule, so sharing is less effective, as

shown in Figure 3, where Ascending order (H1_Asc) merges

more states, but has more transitions and a far bigger worst-

case navigation latency. Descending order (H1_Desc) has

also lower memory utilisation, so we conclude it is a better

option than ascending order when suffix merging is possible.
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Figure 3: Comparison between optimisation heuris-
tics: number of states; number of transitions; worst-
case navigation latency; memory size (in MB); and the
amount of UltraRAM required for FPGA designs.

Overall size is not the only relevant metric on an FPGA de-

sign. Worst-case latency also matters and that is determined

by the maximum number of cycles that are need to process

a query in the worst case. Thus, in the optimisations, we

consider a second metric in the form of the time needed to

navigate the graph and reach a leaf. Additionally, wildcard ‘*’
values and numeric ranges activate a bigger number of tran-

sitions than strictly equality checks. During evaluation, all

these transitions will be active at the same time. The larger

the number of active paths, the more resources remain busy.

Most of these potential matches will be discarded later, so

they are wasted work and delay the pipeline. It is possible to

reduce the number of potential matches by filtering paths

as early as possible. The effect is similar to executing high

selectivity operators first in query processing, as that reduces

the amount of work needed in later stages. Wildcard oper-

ators have low selectivity, while mandatory criteria have

high selectivity; so we place those first. Additionally, the

first criterion can be indexed, so placing first a mandatory

criterion with a big cardinality reduces the evaluation time.

This is accomplished with the following heuristic:

Heuristic 2. (H2_Asc) Let the rule-type t = ⟨C,R,D⟩, the
order of criteria ck ∈ C in the NFA is defined by the following
rules: i) mandatory and strictly equality criteria are placed first;
ii) criteria evaluating numerical ranges are placed last; and iii)
the remaining criteria are placed between the two groups. The
order of criteria within each group is defined by Heuristic 1.

In Figure 3, we show for each one of the approaches we

consider: the number of states; number of transitions; worst-

case number of transitions to traverse (i.e., sum of the max-

imum fanout per level); memory size (in MB); and amount

of UltraRAM [28] required by a single NFA-EE with two

NFA-CUs on FPGA. Note the different scales for each one

NFA/Que
ries AXI

Results 
AXI

Control AXI-lite

Parameters NFA Consistency

NFA loader/Queries Allocator

Computing 
Unit #1

Results Collector

Memory 
Unit #1

Computing 
Unit #2

Computing 
Unit #3

Memory 
Unit #2

Computing 
Unit #4

Figure 4: NFA Evaluation Engine (NFA-EE) overview.

of the measurements. As shown, the H2_Desc heuristic has

the lowest worst-case latency to traverse the NFA, even if

it requires more memory (as it has more transitions) than

the other approaches excepting the random one. Since, in

the context of the MCT design, latency is at a premium, we

choose H2_Desc over the other options, as the final size of the

NFA is still small enough to fit into the FPGA as needed. On

an FPGA, the mapping of memory usage to UltraRAM is not

strictly linear, as the NFA is divided into levels; the UltraRAM

instances have fixed size; and they cannot be shared among

NFA levels. Therefore, memory consumption (be in MB for

CPU implementations, be in UltraRAM for FPGA-ones) and

worst-case latency must be both taken into consideration, as

optimising one does not necessarily mean to optimise the

other one as well. For instance, H2_Desc requires 25% more

UltraRAM utilisation, but is 32% faster than H1_Desc.

The two heuristics consider only the cardinality and data

type of the alphabets. We leave it for future work to exploit

the frequency distribution of the values and the paths to op-

timise the graph even further. The process just described for

NFA building from Business Rules needs around 7 minutes

on a laptop to create a 136K rule NFA. This is sufficiently

fast given the current requirements, even with the planned

growth in the number of rules, as the NFA update is per-

formed offline, while the search engine remains operational.

4 BUSINESS RULES ON AN FPGA
In this section, we describe the architecture strategies for an

efficient FPGA design of the engine. We further detail how

each main component relates to the achieved parallelism

degree. We focus on FPGAs configured as accelerators and

connected to the host machine through a PCIe interface, such

as those provided by Amazon in the AWS F1 instances.

4.1 NFA Evaluation Engine
Figure 4 depicts the architecture of the NFA Evaluation En-
gine (NFA-EE). It has a similar organisation as the Decision

Trees Inference Engine proposed by Owaida et al. in [21], as
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eventually the two enginesmight be combined (see Section 6).

The NFA-EE is highly parallelised, as it contains several NFA
Computing Units (NFA-CUs), the units implementing the ac-

tual NFA navigation logic. Each pair of them accesses one

copy of the NFA transitions stored in a shared UltraRAM

NFA Memory Unit (in Figure 4, NFA-CUs #1 and #2 work

from NFA-MU #1, NFA-CUs #3 and #4 work from NFA-MU

#2, etc.). Being a scarce resource, memory components are

likely to be the limiting factor for scaling the engine up. Al-

locating one NFA-MU for each pair of NFA-CU allows the

engine to double its computing capacity for a fixed memory

utilisation. This is possible because FPGA’s internal memory

is dual-port, so two NFA-CUs can fetch NFA data in parallel

and independently from the same NFA-MU.

Processing proceeds as follows: theQuery Allocator fetches
incoming queries and allocates them to available NFA-CUs.

Within each NFA-CU, queries are enqueued into the corre-

sponding pipeline. Once processed, results from the query

are produced in the same order as the queries arrived. The

merging of the results of all the queries ran in parallel is done

by the Results Collector. The NFA-EE is in one of two main

states: Setup or Execution. In the former, a transitional state,

the engine fetches the NFA data generated offline and stores

it in the internal memory. This step takes about 500 µs, and
is required only once per NFA version. In the case of MCT,

the NFA is updated daily, which makes a 500 µs downtime

quite affordable and two orders of magnitude faster than the

current deployment. During the Execution phase, the engine

is in its working state and performs query evaluation.

The NFA Consistency module automatically detects the

NFA version of incoming queries and turns the engine into

Setup state when necessary. Externally, two AXI-controllers,

NFA/Query and Results, are responsible for loading the NFA

data during setup, fetching queries and dispatching results.

An AXI-lite controller manages control registers for synchro-

nisation between host CPU and FPGAkernel. AXI-controllers

are modules provided by Xilinx Vitis
1
to manage accesses to

either the FPGA’s DDR or to the streaming interface, as well

as to memory registers.

1
http://www.xilinx.com/products/intellectual-property/axi_emc.html
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Figure 6: NFA Computing Unit (NFA-CU) overview.

4.2 Memory Unit: Storing the NFA
To store the NFA in memory, we take advantage of the fact

that the NFA is organised by levels, with each one of them

corresponding to one criterion. The graph data is organised

in such a manner that all the information is contained within

the transitions, so they are the single element required to be

stored (Figure 5). Within each table, transitions are stored in

a breadth-first order, so the ones leaving the same state are

contiguous in memory. Each row contains the information

required for evaluating a transition as part of a path: (i) the

value (or pair of values for ranges) to be matched against the

query; (ii) a pointer to the row in the table of the next level

where the transition leads to; and (iii) a last flag indicating
the end of the current set of transitions for that state. For non-

mandatory criteria whose function µ is equality, wildcard ‘*’
transitions are stored first within their set. This allows an

early termination of the evaluation as soon as two matches

are found within the set. In the last table, pointers are a

reference to the decision value of the matched path.

4.3 Computing Unit: Evaluating queries
The organisation in stages is intended to support a pipelined

query evaluation within the NFA-CU (see Figure 6). The

pipeline has asmany stages as there are criteria in a rule/query.

To process a query ρi , all of its criteria ρic0, ρ
i
c1, ..., ρ

i
cn are

assigned in parallel to their respective pipeline stages (called

Processing Elements, NFA-PEs) via FIFO buffers. The execu-

tion of a query starts from left to right, with the first NFA-PE

processing the first level of the NFA. To do so, it takes the

value for that criterion provided by the query and looks for

matches in the respective table. When a match is found, a

message with the transition pointer is transmitted to the

next NFA-PE, which can then start the evaluation of the next

stage by looking for matches between the value provided

by the query and the set of values listed on the table for

that state. The NFA-PE knows when it has looked at all the

transitions from one state when it finds the last flag.
The nature of the NFA comes here to play. As soon as a

match is found at level i , level i + 1 is informed, and the NFA-

PEi+1 may start processing the state pointed by the matched
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transition. Meanwhile, level i continues evaluating other

transitions, and emits a message for every match, until it

finishes processing all possible transitions at that level for

the current query. At this point, level i can start processing

the next query by taking it from the queue. Since the number

of messages from one level to the next one varies with the

query and level, as each different path will possibly lead to

a different number of matches to process; FIFO buffers are

placed between NFA-PEs to reduce back-pressure, allowing

for different progress rates among the NFA-PEs. When the

last stage finishes processing a query, it passes the pointer

reference to the minimum connection time found to the

Result Aggregator, which will then select the most precise

matched rule for a given query.

With this design, we exploit several forms of parallelism,

even if each NFA-PE is sequential: matches at different levels

are processed in parallel thanks to the pipeline arrangement;

several queries can be in the pipeline at the same time, as

when each stage finishes one query, it can start with the

next; two computing units are working in parallel processing

different sets of queries using the same memory unit; and

several pairs of computing units can be deployed within the

same FPGA.

4.4 Processing Element: Checking criteria
The evaluation of a specific criterion is done by an NFA-
PE. Its high level architecture is shown in Figure 7. The

Synchronisation Unit is responsible for detecting the end

of a query evaluation and for fetching the next one. The

Arithmetic Logic Unit performs the actual matching operation

µc , while theWeight Decisionmodule computes the precision

weight of the current path according to the transition under

evaluation. The interim precision weight (ϱ) of the path after

evaluation in level c is ϱc = ϱc−1 +W , whereW = ϖc when

the match is against a proper value andW = 0 when the

match is generated by the wildcard ‘*’. Matched transitions

generate a new path message in the Path Forwarding unit

towards the next NFA-PE. The logic that fetches a row from

the memory, does the comparison, triggers a message, and

moves to the next row is implemented as a state machine

managed by the Control Unit.
While for software programmers the architecture might

seem contrived, it is easy to map it to a modular software

design. Each NFA-PE corresponds to the logic needed to

understand the data type and comparison operators specific

to each criterion (i.e., each NFA-PE is specific to a criterion).

Then, the NFA-PEs are connected as a pipeline to form a

computing unit, NFA-CUs organised in pairs around an NFA-

MU, and pairs of NFA-CUs plus one NFA-MU used as unit

of deployment. The use of a table per level decouples each

NFA-PE from the other and limits the amount of data that a

NFA-PE needs to manage to that level of the NFA. This allows

to use the local, fast memory available on the FPGA. It also

explains the need to make the NFA as compact as possible,

and to minimise the time it takes to navigate the whole

pipeline for a query, what we called worst-case navigation

latency in Figure 3. The shorter the worst-case, the faster the

query is processed. Another way to explain why we used

heuristic H2_Desc is that it gives us the shortest time to

process a query and the resulting NFA is small enough, so

that each NFA-PE can fit its data into local memory.

4.5 Deployment on an FPGA
The NFA-EE design takes advantage of the multiple clocks

available in the shells. The data clock, used for AXI-controllers,

is usually fixed by the platform. We use a second clock

to drive the main kernel, which imposes less constraints

and therefore can achieve higher frequencies. The deploy-

ment shell used in AWS F1 instances
2
fixes the data clock to

250 MHz. For on-premises implementations, the data clock

is fixed to 300 MHz, and the kernel clock is dynamically de-

termined by the framework a value up to 500 MHz, varying

according to the complexity of the design (resource utilisa-

tion, physical location of UltraRAM instances, etc.).

We use Xilinx Vitis [30] as development and integration

platform, which imposes certain design decisions. In par-

ticular, the communication interface available on-premises

and on AWS boards diverges. The version we used for cloud

deployments follows a similar procedure as the one used for

GPUs: memory is allocated in the co-processor, the host loads

the input data into it, the co-processor processes the data,

and the host fetches the output. This procedure is not optimal

for FPGAs, as it imposes a high latency overhead for short

jobs, and prevents streaming. The new Xilinx shell [29], still

in beta version and with restricted access to select customers

at the time of writing, provides a new streaming interface,

which allows a finer grain synchronisation between the host

and the FPGA. We have had access to such an interface and

2
https://github.com/aws/aws-fpga/blob/master/hdk/docs/AWS_Shell_

Interface_Specification.md
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experiments on-premises in this paper are reported using

this shell. Comparing both interfaces on the same board and

environment, we can report that the new one significantly

improves latency when the data transfer involves a small

amount of data.

5 EXPERIMENTAL EVALUATION
In this section, we present performance comparisons be-

tween our FPGA-based Business Rule Engine, and several

reference baselines, including a CPU implementation of the

NFA. To validate the heuristics used, we also generated and

deployed an NFA for each one of the heuristics considered,

evaluating their operational performance.

5.1 Experimental Setup
Table 2 in Appendix lists the platforms used for the exper-

iments and their main characteristics. In the cloud, we use

both a large, CPU-based server and a smaller, FPGA-based

instance. On-premises, we use two large multi-core servers

similar to the ones used in the flight search engine, and a

modern FPGA board that provides more resources than the

one available in the Amazon F1 instance.

The workload used in the experiments is based on the ac-

tual workload, augmented with synthetic queries to ensure

coverage of the entire rule search space. Experiments are

run using batches containing 1 to several thousands queries.

Query batching is used in the MCT module given the nature

of the flight search engine. When a user looks for a flight,

the request that is passed to the MCT module is a batch of

possible connections for that user query. Ideally, one would

like to check as many routes as possible for a user query to

maximise the chances of finding the best ones. How many

routes are checked is limited by the time it takes to process

a batch, which depends on the batch size, and the overall

latency budget. The use of batches is, thus, relevant not only

for comparing the performance of our design and of the base-

lines, but also regarding the integration of the FPGA-based

MCT into the search engine (see Section 6). Per batch size,

we measured one thousand samples. All the numbers pre-

sented correspond to the 90
th
percentile of the experiments

per batch, as that matches the SLAs of the search engine.

5.2 Baselines
We use two baselines as a reference for the performance of

our FPGA-based design: (i) the CPU implementation of our

NFA structure; and (ii) Drools, a complete BRMS used by

Amadeus in other applications. We also discuss the current

deployment of the MCT module as an architectural baseline.

5.2.1 Current MCT Implementation. The current MCT mod-

ule is a C++ implementation that uses neither an FA nor any

special processing technique beyond ordering of the criteria

and data partitioning. The static rule set is stored in main

memory, where it takes about 130 MB. The downtime re-

quired to upload an updated set of rules is in the order of

hundreds of milliseconds.

The MCT module is embedded in the Domain Explorer

of the flight search engine, which maps each user query to

a thread that processes this one in its entirety while at the

Domain Explorer component. The MCT module is therefore

also single threaded. Scalability is accomplished by replicat-

ing the MCT module within each processing thread. Since

a user query arriving to the Domain Explorer is mapped

to a thread, it is easy to see how the requests to the MCT

module are batched. Typically, an MCT request will contain

a batch of all the MCT queries needed to check all routes

being considered for a particular flight search query. Thus, to

reduce calling and data transfer overhead, the MCT module

is called to perform its task on a batch of queries rather than

being called once for every query.

The rules used in the current implementation of the MCT

module are partitioned first by airport and then by connec-

tion type (combination of International and Domestic values),
two mandatory criteria. This helps to reduce the number of

cases that need to be checked for other criteria. The evalua-

tion starts scanning the set by weight group, so more precise

rules are on the top of the list. The first rule matching all the

criteria of the query is then returned.

5.2.2 Drools. Drools is an open-source Java BRMS support-

ing both forward and backward chaining-based inference.

Drools’ pattern matching algorithm, born as an implemen-

tation of RETE [8], evolved over the years to increase both

performances and rule expressiveness by introducing fea-

tures like node sharing, alpha/beta indexing, sub-networks,

and lazy evaluation [23]. Drools patterns support, on top of

conjunction and disjunction of Boolean predicates, existen-

tial and universal quantification, negation and computation

of aggregates (e.g., count, min, max, average, etc.).

As most RETE implementations, Drools compiles rules’

constraints into a tree structure called Alpha Network
3
. Each

node in the tree represents a constraint, and any path from

the root to a leaf represents a rule. When possible, Drools

merges nodes that hold the same constraint while building

the Alpha Network, similarly to the aforementioned prefix

merging optimisation strategy. A hash index is also built for

all the sets of more than three nodes that hold an equality

check against a literal on the same fact attribute.

A direct consequence of above node sharing and indexing

strategies is that sorting constraints according to Heuristic 2

3
A second, more complex data structure, called Beta Network, is generated

withmore expressive rules involving, e.g., multiple patterns, join constraints,

universal quantification, negation, aggregates. This is not the case, however,

for the kind of rules discussed in this paper.
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constitutes a good choice for Drools too: having mandatory

criteria first with a consistent order favours node sharing.

Moreover, for the same reasons discussed in Section 3.2,

sorting criteria by ascending cardinality of their alphabet

optimises for smaller number of nodes. Since Drools only

provides prefix merging optimisation, descending order does

not bring any advantage. Finally, numerical range checks,

not being indexable with hash tables, are better placed at the

end, favouring the construction of indexes on the equality

constraints that come before.We therefore used this heuristic

to model MCT rules in Drools.

When compiling the full set of 136K MCT rules, Drools

generates an Alpha Network of 566,190 nodes in about 2

minutes, which requires about 3.5 GB to be stored in the Java

heap. Before running the actual batch, we perform a warm-

up run, where every query is evaluated multiple times. This

helps mitigate the effect of lazy static initialisation, which

have a non-negligible impact on the first queries, but are

not relevant for long-running server applications such as

MCT. The number of warm-up queries needed to reach the

steady-state response time mainly depends on the size of the

network: for MCT, we empirically found it to range from

10,000 times the batch size for small batches to 10 times the

batch size for big batches.

For every query, we measure the time required to perform

operations: (i) insert in a Drools session a MCT fact with the

query input; and (ii) run the enginewith a limit ofmaximum 1

rule execution. Finally, we retract the fact from the session, so

that it is ready for the next query.We chose not to account for

the time required to retract the fact from the session because

this can be done in parallel to sending the MCT result to the

client. We ran the benchmark on Oracle HotSpot 1.8.0_65

allocating 16 GB of heap to the JVM. We experimented with

smaller heap sizes as well, and found that below 6 GB the

garbage collection activity begins to significantly impact

performance. With a heap size of 6 GB, the virtual size of the

process settles at 9.5 GB and the resident-set size at 7.2 GB.

Being single threaded, we compare the execution time of

Drools to our CPU single threaded baseline (Figure 11), how-

ever for throughput comparisons we compute what would

be the throughput of a server deploying the solution, hence

the 80-threaded CPU baseline. For small batches (up to 1,024

queries), Drools is about five times faster than the CPU-NFA

design. This, at the cost of using 3,200 times more mem-

ory, which is an important limiting factor for deployment in

production of the MCT use case.

It is important to understand the reason why Drools needs

9.5 GB of memory: this engine is based on a modern version

of RETE, an algorithm that improves performance at the cost

of increasing the memory utilisation, a common trade-off to

many rule engines. In all fairness, though, the RETE algo-

rithm is more powerful than what is needed for the MCT use
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Figure 8: Throughput comparison of NFA and DFA im-
plementations on CPU for five small rule subsets.

case, as it supports inference and complex event processing.

Drools is also implemented in Java, which adds to the overall

memory requirements and performance overhead. In addi-

tion, the MCTworkload dimension imposes a long downtime

for Drools on every rule set update, which is not acceptable

for an interactive service as the fight search engine.

5.2.3 CPU implementations. We have developed two CPU

versions in C++ using a DFA and an NFA similar to the one

used in the FPGA. Both use Heuristic 2 with descending

order to optimise and reduce the size of the FAs. Both index

attributes as needed to speed up access. Five small data sets,

corresponding to rules from individual airports, were used

for the DFA vs. NFA comparison. We have tried to generate

DFAs for larger subsets of rules, but we were not able to do

so even using a very large server. Our analysis show that,

for 136K rules, the intermediate DFA would reach about 3.5

billions of transitions, and an optimistic estimate of the size

after suffix merging would be about 1 billion transitions.

Figure 8 shows that the CPU-DFA is about 10% to 47% faster

than the CPU-NFA, at the cost of having a larger memory

footprint. This cost is about 300% to 500% bigger than the

NFA-equivalent data structure, and is likely to increase as

the number of rules increase.

The CPU-NFA implementation follows the model used

in the current system: each MCT module runs in a Domain

Explorer thread, and each one keeps its own copy of the

NFA. This makes the design compute-bound. Each thread

navigates the NFA using a Depth-First-Search strategy. Since

the NFA takes less than 2 MB (Figure 3), it largely fits in the

cache. Furthermore, the NFA data is read-only during eval-

uation, eliminating any sort of synchronisation and cache-

invalidation among different cores. This design sacrifices

parallelism within the MCT module, but allows to scale the

Domain Explorer by spawning a thread per user query. The

CPU version of the NFA is an important reference, as it is

faster than the current MCT implementation, but not as

fast as Drools (Figure 11). However, these three systems are

algorithmic- and architecturally different among themselves

Industry 4: Advanced Functionality  SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2265



0

5

10

15

20

25

1 10 100 1000 10000 100000 1000000

Q
U

ER
IE

S/
S

M
IL

LI
O

N
S

BATCH SIZE

Random H1_Asc H1_Desc H2_Asc H2_Desc

Figure 9: Throughput comparison for the different op-
timisation heuristics on FPGA using one NFA-EE.

and to what we propose in the paper. The CPU version pro-

vides a better perspective of what the CPU and the FPGA

contribute, as it implements exactly the same algorithm as

that of the FPGA.

5.3 NFA optimisation heuristics evaluation
We now experimentally validate the choice of heuristics used

when constructing the NFA (Figure 3, Section 3.2). From the

exact same data set, the 136KMCT rules, we generate five dif-

ferent NFAs: two per heuristic (i.e., ascending and descending

variations), and one random-order baseline. The results are

shown in Figure 9, which measures the throughput reached

for each option. The test is done with a single NFA-EE with

two NFA-CUs. Clock frequency of all deployments is compa-

rable, ranging from 471 to 500 MHz.

For small batches up to 32 queries, the communication

overhead dominates, so disparities due to the different NFAs

are not visible. For batches larger than 100 queries, however,

H2_Desc achieves up to 20M queries/s using 2.30MB of mem-

ory, while H2_Asc achieves about 90% of this throughput

using about 82% of memory. H1_Desc performs about 65%

of the processing rate of H2_Desc, while requiring 70% of

main memory to store the NFA. Note that the throughput

figures in Figure 9 capture the expected behaviour based on

the worst-case latency shown in Figure 3. All these three

heuristics place the same criterion as the first to check, being

the mandatory criterion with the largest cardinality. The

evaluation of this criterion is through an index and, thus,

requires only one cycle. For the other approaches, the evalua-

tion of this criterion alone already requires from 1 (best case)

to 3,486 (worst case) cycles. This is the reason why H1_Asc

and Random ordering perform so poorly, with only 3% of the

throughput of the fastest variation. Therefore, when com-

paring the FPGA design to the baselines, H2_Desc will be

the optimisation heuristic used.

5.4 FPGA
To evaluate the FPGA design, we have performed a number

of experiments both on-premises and in the cloud, compar-

ing the performance and cost of the different designs. As in

all previous experiments, measurements of response time

and throughout are as seen from the invoking CPU (i.e., what

the Domain Explorer will see). The cloud deployment is as

follows: on the host/CPU side, a single-thread CPU kernel

manages the data, packs the requests into a batch, allocates

the memory in the FPGA’s DDR and transfers the batch.

Next, the FPGA kernel is called with a pointer to the query

batch. Once the FPGA kernel has finished processing, the

host fetches the results. The on-premise setup takes advan-

tage of the new streaming interface: the CPU kernel packs

the requests into a batch andmanages two streaming threads,

(i) input data; and (ii) results. The FPGA kernel starts process-

ing as data arrives from the stream, and outputs the results

as soon as they are ready. Execution time is measured from

the point where the host is ready to start the request until it

has received all the results (i.e., it has fetched them from the

FPGA’s DDR to hosts main memory via PCIe, or has received

all the results from the stream).

5.4.1 On-premise experiments. The first set of performance

comparisons is on-premises using the platforms listed in

Appendix Table 2. Figure 11 shows the execution time of a

batch and throughput as a function of the batch size. The

plots compare the two baselines (Drools and CPU-NFA), and

four versions of the FPGA implementation, using one, two,

four and eight NFA-EEs; all deploying the new Xilinx QDMA

shell. The plots illustrate the effect of the batch size on per-

formance. FPGA communication overhead over PCIe puts

a lower bound on the FPGA response time. This favours

the two CPU-based baselines, which are quite fast for very

small batches. For large batches, however, the FPGA has

enough workload to leverage its huge compute capacity, and

compensates for the overhead of PCIe communications.

To understand in more detail this behaviour, in Figure 10

we break down the overheads for different parts of invoking

an FPGA kernel using the traditional XDMA shell. Up to 32
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80%
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Batch size

Kernel Execution Data Transfer Results Transfer Invocation Overhead

Figure 10: FPGA’s response time distribution.
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Figure 11: Execution time and throughput for the baselines and the FPGA designs with multiple NFA-EEs as a
function of batch size. All experiments on-premises.

queries per batch, the invocation and data transfer overheads

over PCIe consume more than half of the total execution

time. For larger batches, the kernel execution (computation

only) consumes close to 90% of total execution time. In the

context of MCT, the batches are large enough, so we are not

concerned about the PCIe overhead. It must be mentioned,

however, that connectivity to accelerators is a very active

area of research and development where, in the near future,

significant improvements will be available in terms of both

bandwidth and latency (e.g., CLX
4
).

5.4.2 Cloud-based experiments. We have conducted a num-

ber of experiments in the cloud comparing the efficiency

(queries per U.S. Dollar) for each of our designs: the CPU-

NFA version and four different deployments of the FPGA

implementation, using one, two, four and eight NFA-EEs. We

used the AWS F1 instances listed in Appendix Table 2. For our

computing cost calculations, we selected two different batch

sizes: 128 and 8,192. For the CPU implementation, we count

the total machine throughput by multiplying the throughput

of a single thread with the number of cores available. This

metric is similar to those used by the flight search engine

4
https://www.computeexpresslink.org
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Figure 12: Computing cost for CPU and FPGA deploy-
ments in the cloud in billions of queries per USD.

today, and indicates the maximum theoretical throughput

the implementation would get if completely utilised for MCT.

The experiment shows a query-efficiency per U.S. Dollar of

almost one order of magnitude higher for the FPGA solution

compared to the CPU version.

Given the different clock frequencies between the FPGAs,

shell variations, and the PCIe bandwidth available between

host and FPGA, on-premises deployments have a throughput

30% higher, on average, than in the cloud. But such a compar-

ison is not the most pertinent, as these are different systems

operating under different constraints, and will continually

evolve. More relevant is the potential efficiency gain offered

by FPGA designs demonstrated in Figure 12. The plot implies

that an FPGA implementation is more efficient when there

is enough load on it. More importantly, there is no point in

utilising more FPGA resources, i.e., the FPGA 4E, for a single

operation if the load does not saturate a smaller version, i.e.,

the FPGA 2E.

5.4.3 Resource utilisation. Table 3 in Appendix shows the

resources consumed by the different FPGA designs, as well as

the resulting maximum clock frequency, and the total power

consumption.

6 DISCUSSION
There are several ways to take advantage of the design just

described as a deployment solution within the Amadeus

flight search engine. We discuss them here to illustrate the

interplay between hardware acceleration and existing sys-

tems.

By running MCT on an FPGA, we could free up to 40% of

CPU time in the Domain Explorer, which could then, theoret-

ically, accept 40% more requests. However, even the higher

number of requests would barely saturate the FPGA-based

engine, given that it provides performance that is orders

of magnitude higher than the current CPU implementation.

While it is not possible to choose a different board onAmazon
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Figure 13: Moving Route Scoring [21] and MCT to an
FPGA running on the same machine as the Domain
Explorer.

cloud, as of March 2020, a smaller FPGA fitting fewer NFA-

EEs could be used for a deployment on-premises. It would

drastically reduce the cost of the FPGA, while ensuring the

same quality of service with 40% less servers; reducing from

400 CPU-only Domain Explorers to about 240 CPU-FPGA

nodes.

Alternatively, the extra capacity of a big FPGA board could

be used to combine the MCT module with Route Scoring, an-

other part of the flight search engine successfully accelerated

using FPGAs [21]. The Route Scoring would move earlier

in the flow, directly inside the Domain Explorer, to score

the routes during the flight domain exploration (Figure 13).

By doing so, the Route Scoring would be able to process

several tens of thousands of routes in the Domain Explorer,

instead of only few hundreds inside the Route Selection,

while respecting the same response time constraint. Both

MCT and Route Scoring would then be on the same FPGA,

and pipelined together to minimise the back and forth with

the CPU. Such pipeline would require an additional refac-

toring of the Domain Explorer, since the notions of route

for MCT and Route Scoring are not exactly the same, but

such deployment would optimise the FPGA occupancy and

its usage, while combining the potential business benefits of

both modules.

In terms of the resulting system, what we propose is nar-

rower than a general purpose business rule engine. A good

analogy is a key value store (KVS) versus a full relational

database engine. On one hand, a KVS is faster and more

scalable for a narrower set of use cases and operations. On

the other hand, a database supports a far wider set of use

cases, but the price of generality is reduced performance

and elasticity. One way to look at what we propose here is

to understand it as a form of “key value store” for business

rules that significantly improves performance and resource

utilisation for a narrower set of use cases. As with KVS, the

advantages of a specialised system are significant enough to

be considered a replacement to more general solutions.

7 CONCLUSIONS
In the context of a commercial flight search engine, in this

paper we have explored how to use hardware acceleration

through FPGAs to implement a business rule management

system capable of sustaining strict throughput and latency

requirements. We described how to efficiently model large

collections of business rules using NFAs. The result is avail-

able as open-source
5
.

Experimental results demonstrate a performance gain of

several orders of magnitude when compared with the current

implementation, Drools, and a CPU version of the design.

The results also demonstrate the feasibility of running the

system in the cloud. In addition, the design is suitable to

be deployed on FPGAs embedded as co-processors, which

opens up the possibility of reducing the number of CPUs

needed to address the computing demand of the flight search

engine.

The current results only cover rule matching without any

forward or backward chaining. As part of future work, we

will explore incorporating richer semantics on the rule at-

tributes, as well as a more general rule resolution algorithm.

On the hardware acceleration side, we intend to explore

other architectures, including smart-NICs, clusters of FPGAs,

and FPGAs with High Bandwidth Memory.
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A APPENDIX

Table 2: Platforms used in the experimental evaluation.

CPU Cores RAM FPGA PCIe Bandwidth ($/Hr)

AWS Instance

CPU c5.12xlarge Intel Xeon Platinum 8275CL 48 92 GB – – 2.30

FPGA f1.2xlarge Intel Xeon E5-2686 v4 4 122 GB UltraScale+ VCU9P, 270 Mb 10 GB/s 1.82

On-Premises

Benchmarks Intel Xeon E5-4650 v2 40 512 GB – –

Drools server Intel Xeon E5-2640 v3 16 125 GB – –

FPGA server Intel Xeon Gold 6234 8 157 GB Xilinx Alveo U250, 360 Mb 11.3 GB/s

Table 3: Resource utilisation, maximum clock frequency and power consumption on different FPGA boards and
number of NFA-EEs. Shell’s consumption is also reported.

LUTs Registers BlockRAM UltraRAM Clock Power

U
2
5
0
Q
D
M
A

Available 1,728,000 (100%) 3,456,000 (100%) 2,688 (100%) 1,280 (100%) 3.32 W

Shell 169,315 (9.80%) 210,473 (6.09%) 177 (6.58%) 5 (0.39%) 300 Mhz

H2Desc 1E 52,908 (3.06%) 76,640 (2.22%) 30 (1.12%) 100 (7.81%) 500 Mhz 10.72 W

H2Desc 2E 60,237 (3.49%) 85,852 (2.48%) 30 (1.12%) 200 (15.63%) 413 Mhz 11.53 W

H2Desc 4E 74,759 (4.33%) 105,009 (3.04%) 30 (1.12%) 400 (31.25%) 292 Mhz 13.28 W

H2Desc 8E 104,282 (6.03%) 143,350 (4.15%) 30 (1.12%) 800 (62.50%) 162 Mhz 16.93 W

H2Desc AE 119,053 (6.89%) 161,911 (4.68%) 30 (1.12%) 1,000 (78.13%) 168 Mhz 18.75 W

U
2
5
0
X
D
M
A

Available 1,728,000 (100%) 3,456,000 (100%) 2,688 (100%) 1,280 (100%) 3.32 W

Shell 104,112 (6.03%) 160,859 (4.65%) 165 (6.14%) - (0.00%) 300 MHz

H2Desc 1E 47,779 (2.76%) 80,637 (2.33%) 78 (2.90%) 100 (7.81%) 201 MHz 13.18 W

H2Desc 2E 55,139 (3.19%) 90,021 (2.60%) 78 (2.90%) 200 (15.63%) 215 MHz 15.04 W

H2Desc 4E 69,798 (4.04%) 107,968 (3.12%) 78 (2.90%) 400 (31.25%) 215 MHz 18.45 W

H2Desc 8E 99,126 (5.74%) 146,126 (4.23%) 78 (2.90%) 800 (62.50%) 190 MHz 25.56 W

H2Desc AE 113,786 (6.58%) 166,479 (4.82%) 78 (2.90%) 1,000 (78.13%) 149 MHz 29.35 W

A
W
S
F
1

Available 1,181,768 (100%) 2,363,536 (100%) 2,160 (100%) 960 (100%) 3.39 W

Shell 157,748 (13.35%) 205,917 (8.71%) 199 (9.21%) 43 (4.48%) 250 MHz

H2Desc 1E 28,903 (2.45%) 42,258 (1.79%) 31 (1.44%) 100 (10.42%) 402 MHz 35.60 W

H2Desc 2E 36,419 (3.08%) 51,444 (2.18%) 31 (1.44%) 200 (20.83%) 388 MHz 39.97 W

H2Desc 4E 50,898 (4.31%) 70,668 (2.99%) 31 (1.44%) 400 (41.67%) 282 MHz 41.56 W

H2Desc 8E 80,308 (6.80%) 108,970 (4.61%) 31 (1.44%) 800 (83.33%) 191 MHz 49.76 W
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